Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-06-2020 | Original Article | Issue 6/2021

Neural Computing and Applications 6/2021

A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery

Journal:
Neural Computing and Applications > Issue 6/2021
Authors:
Liming Deng, Wenjing Shen, Hongfei Wang, Shuqiang Wang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper proposes a novel empirical model for the remaining useful life prediction of lithium-ion battery. The proposed model is capable of modeling both the global degradation and local degradation of lithium-ion battery aging process. The global degradation process is regarded as the ideal aging profile without any interference by regeneration phenomenon. However, the regeneration phenomenon inevitably occurs in practical usage of lithium-ion battery and affects the local degradation significantly. Therefore, we separate the local degradation process from the global degradation process to represent the local battery aging process affected by regeneration phenomenon. We unify the modeling method for the global and local degradation process by exponential functions with cleverly designing of the corresponding cycles. The particle filter framework is employed to estimate the model parameters with measurement data. The future capacity is predicted after the identification, and the remaining useful life is extracted by calculating the difference between the predicted capacity and failure threshold. Model comparisons on benchmark battery datasets have been conducted. The results demonstrate that our proposed method is capable of capturing the degradation and regeneration phenomena, and the remaining useful life prediction performance of our proposed model is better than state-of-the-art modeling methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

Neural Computing and Applications 6/2021 Go to the issue

Premium Partner

    Image Credits