Skip to main content
Top

21-01-2020 | Review Article

A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions

Authors: Junsun Hwang, Jin-young Kim, Hongsoo Choi

Published in: Intelligent Service Robotics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic actuation techniques and microrobots have attracted considerable interest due to their potential applications in biomedicine. Interventional techniques have emerged as a minimally invasive approach to treat a wide range of vascular diseases. The current practice of interventional procedures is, however, limited by manual control of interventional devices and time-consuming procedures. Moreover, fluoroscopy is considered as an essential part of the procedure today despite posing many limitations for patients and physicians. Recently, various microrobotic solutions have been proposed for vascular interventions, including advances in magnetic navigation systems and magnetically steerable catheters and guidewires, which have shown potential benefits such as reduced radiation doses, improved access to difficult-to-reach and tortuous anatomy. This paper reviews the commercial magnetic actuation systems and magnetically actuated interventional microrobots that have been developed by academic research groups and medical companies worldwide, outlining their capability, applicability as well as limitations. We further address the challenges and future prospects of the research toward clinical acceptance of magnetic interventional technologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jager EW, Inganäs O, Lundström I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288(5475):2335–2338CrossRef Jager EW, Inganäs O, Lundström I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288(5475):2335–2338CrossRef
2.
go back to reference Charreyron SL, Zeydan B, Nelson BJ (2017) Shared control of a magnetic microcatheter for vitreoretinal targeted drug delivery. In: 2017 IEEE international conference on robotics and automation (ICRA), 2017. IEEE, pp 4843–4848 Charreyron SL, Zeydan B, Nelson BJ (2017) Shared control of a magnetic microcatheter for vitreoretinal targeted drug delivery. In: 2017 IEEE international conference on robotics and automation (ICRA), 2017. IEEE, pp 4843–4848
3.
go back to reference Park J, Jin C, Lee S, Kim JY, Choi H (2019) Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv Healthc Mater 8(16):1900213CrossRef Park J, Jin C, Lee S, Kim JY, Choi H (2019) Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv Healthc Mater 8(16):1900213CrossRef
4.
go back to reference Vikram Singh A, Sitti M (2016) Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des 22(11):1418–1428CrossRef Vikram Singh A, Sitti M (2016) Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des 22(11):1418–1428CrossRef
5.
go back to reference Lee S, Kim S, Kim S, Kim JY, Moon C, Nelson BJ, Choi H (2018) A capsule-type microrobot with pick-and-drop motion for targeted drug and cell delivery. Adv Healthc Mater 7(9):1700985CrossRef Lee S, Kim S, Kim S, Kim JY, Moon C, Nelson BJ, Choi H (2018) A capsule-type microrobot with pick-and-drop motion for targeted drug and cell delivery. Adv Healthc Mater 7(9):1700985CrossRef
6.
go back to reference Jeon S, Kim S, Ha S, Lee S, Kim E, Kim SY, Park SH, Jeon JH, Kim SW, Moon C, Nelson BJ, Kim J-Y, Yu S-W, Choi H (2019) Magnetically actuated microrobots as a platform for stem cell transplantation. Sci Robot 4(30):eaav4317CrossRef Jeon S, Kim S, Ha S, Lee S, Kim E, Kim SY, Park SH, Jeon JH, Kim SW, Moon C, Nelson BJ, Kim J-Y, Yu S-W, Choi H (2019) Magnetically actuated microrobots as a platform for stem cell transplantation. Sci Robot 4(30):eaav4317CrossRef
7.
go back to reference Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, Nelson BJ, Choi H (2013) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 25(41):5863–5868CrossRef Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, Nelson BJ, Choi H (2013) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 25(41):5863–5868CrossRef
8.
go back to reference Ceylan H, Giltinan J, Kozielski K, Sitti M (2017) Mobile microrobots for bioengineering applications. Lab Chip 17(10):1705–1724CrossRef Ceylan H, Giltinan J, Kozielski K, Sitti M (2017) Mobile microrobots for bioengineering applications. Lab Chip 17(10):1705–1724CrossRef
9.
go back to reference Lee S, Lee S, Kim S, Yoon C-H, Park H-J, Kim J-y, Choi H (2018) Fabrication and characterization of a magnetic drilling actuator for navigation in a three-dimensional phantom vascular network. Sci Rep 8(1):3691CrossRef Lee S, Lee S, Kim S, Yoon C-H, Park H-J, Kim J-y, Choi H (2018) Fabrication and characterization of a magnetic drilling actuator for navigation in a three-dimensional phantom vascular network. Sci Rep 8(1):3691CrossRef
10.
go back to reference Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85CrossRef Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85CrossRef
11.
go back to reference Sitti M (2009) Miniature devices: voyage of the microrobots. Nature 458(7242):1121CrossRef Sitti M (2009) Miniature devices: voyage of the microrobots. Nature 458(7242):1121CrossRef
12.
go back to reference Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller ED (2015) Biomedical applications of untethered mobile milli/microrobots. Proc IEEE 103(2):205–224CrossRef Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller ED (2015) Biomedical applications of untethered mobile milli/microrobots. Proc IEEE 103(2):205–224CrossRef
13.
go back to reference Stone GW, Maehara A, Lansky AJ, De Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235CrossRef Stone GW, Maehara A, Lansky AJ, De Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235CrossRef
14.
go back to reference Kearney K, Hira RS, Riley RF, Kalyanasundaram A, Lombardi WL (2017) Update on the management of chronic total occlusions in coronary artery disease. Curr Atheroscler Rep 19(4):19CrossRef Kearney K, Hira RS, Riley RF, Kalyanasundaram A, Lombardi WL (2017) Update on the management of chronic total occlusions in coronary artery disease. Curr Atheroscler Rep 19(4):19CrossRef
15.
go back to reference Touma G, Ramsay D, Weaver J (2015) Chronic total occlusions—current techniques and future directions. IJC Heart Vasc 7:28–39CrossRef Touma G, Ramsay D, Weaver J (2015) Chronic total occlusions—current techniques and future directions. IJC Heart Vasc 7:28–39CrossRef
16.
go back to reference Louvard Y, Lefèvre T, Morice M-C (2004) Percutaneous coronary intervention for bifurcation coronary disease. Heart 90(6):713–722CrossRef Louvard Y, Lefèvre T, Morice M-C (2004) Percutaneous coronary intervention for bifurcation coronary disease. Heart 90(6):713–722CrossRef
17.
go back to reference Roubin GS, Yadav S, Iyer SS, Vitek J (1996) Carotid stent-supported angioplasty: a neurovascular intervention to prevent stroke. Am J Cardiol 78(3):8–12CrossRef Roubin GS, Yadav S, Iyer SS, Vitek J (1996) Carotid stent-supported angioplasty: a neurovascular intervention to prevent stroke. Am J Cardiol 78(3):8–12CrossRef
18.
go back to reference Levin DC, Rao VM, Parker L, Bonn J, Maitino AJ, Sunshine JH (2005) The changing roles of radiologists, cardiologists, and vascular surgeons in percutaneous peripheral arterial interventions during a recent five-year interval. J Am College Radiol 2(1):39–42CrossRef Levin DC, Rao VM, Parker L, Bonn J, Maitino AJ, Sunshine JH (2005) The changing roles of radiologists, cardiologists, and vascular surgeons in percutaneous peripheral arterial interventions during a recent five-year interval. J Am College Radiol 2(1):39–42CrossRef
19.
go back to reference Willinsky R (2000) Use of a second microcatheter in the management of a perforation during endovascular treatment of a cerebral aneurysm. Am J Neuroradiol 21(8):1537–1539 Willinsky R (2000) Use of a second microcatheter in the management of a perforation during endovascular treatment of a cerebral aneurysm. Am J Neuroradiol 21(8):1537–1539
20.
go back to reference Jones WS, Mi X, Qualls LG, Vemulapalli S, Peterson ED, Patel MR, Curtis LH (2015) Trends in settings for peripheral vascular intervention and the effect of changes in the outpatient prospective payment system. J Am Coll Cardiol 65(9):920–927CrossRef Jones WS, Mi X, Qualls LG, Vemulapalli S, Peterson ED, Patel MR, Curtis LH (2015) Trends in settings for peripheral vascular intervention and the effect of changes in the outpatient prospective payment system. J Am Coll Cardiol 65(9):920–927CrossRef
21.
go back to reference Jaïs P, Haïssaguerre M, Shah DC, Chouairi S, Gencel L, Hocini M, Clémenty J (1997) A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation 95(3):572–576CrossRef Jaïs P, Haïssaguerre M, Shah DC, Chouairi S, Gencel L, Hocini M, Clémenty J (1997) A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation 95(3):572–576CrossRef
22.
go back to reference Verma A, Jiang C-y, Betts TR, Chen J, Deisenhofer I, Mantovan R, Macle L, Morillo CA, Haverkamp W, Weerasooriya R (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372(19):1812–1822CrossRef Verma A, Jiang C-y, Betts TR, Chen J, Deisenhofer I, Mantovan R, Macle L, Morillo CA, Haverkamp W, Weerasooriya R (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372(19):1812–1822CrossRef
23.
go back to reference Schneider P (2019) Endovascular skills: guidewire and catheter skills for endovascular surgery. CRC Press, Boca Raton Schneider P (2019) Endovascular skills: guidewire and catheter skills for endovascular surgery. CRC Press, Boca Raton
24.
go back to reference Ammann P, Brunner-La Rocca HP, Angehrn W, Roelli H, Sagmeister M, Rickli MdH (2003) Procedural complications following diagnostic coronary angiography are related to the operator’s experience and the catheter size. Catheter Cardiovasc Interv 59(1):13–18CrossRef Ammann P, Brunner-La Rocca HP, Angehrn W, Roelli H, Sagmeister M, Rickli MdH (2003) Procedural complications following diagnostic coronary angiography are related to the operator’s experience and the catheter size. Catheter Cardiovasc Interv 59(1):13–18CrossRef
25.
go back to reference Suzuki S, Furui S, Kohtake H, Yokoyama N, Kozuma K, Yamamoto Y (2006) Radiation exposure to patient’s skin during percutaneous coronary intervention for various lesions, including chronic total occlusion. Circ J 70(1):44–48CrossRef Suzuki S, Furui S, Kohtake H, Yokoyama N, Kozuma K, Yamamoto Y (2006) Radiation exposure to patient’s skin during percutaneous coronary intervention for various lesions, including chronic total occlusion. Circ J 70(1):44–48CrossRef
26.
go back to reference Rosenthal LS, Mahesh M, Beck TJ, Saul JP, Miller JM, Kay N, Klein LS, Huang S, Gillette P, Prystowsky E (1998) Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. Am J Cardiol 82(4):451–458CrossRef Rosenthal LS, Mahesh M, Beck TJ, Saul JP, Miller JM, Kay N, Klein LS, Huang S, Gillette P, Prystowsky E (1998) Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. Am J Cardiol 82(4):451–458CrossRef
27.
go back to reference Miller DL, Balter S, Noonan PT, Georgia JD (2002) Minimizing radiation-induced skin injury in interventional radiology procedures. Radiology 225(2):329–336CrossRef Miller DL, Balter S, Noonan PT, Georgia JD (2002) Minimizing radiation-induced skin injury in interventional radiology procedures. Radiology 225(2):329–336CrossRef
28.
go back to reference Walsh SR, Cousins C, Tang TY, Gaunt ME, Boyle JR (2008) Ionizing radiation in endovascular interventions. J Endovasc Ther 15(6):680–687CrossRef Walsh SR, Cousins C, Tang TY, Gaunt ME, Boyle JR (2008) Ionizing radiation in endovascular interventions. J Endovasc Ther 15(6):680–687CrossRef
29.
go back to reference Stratakis J, Damilakis J, Tsetis D, Gourtsoyiannis N (2007) Radiation dose and risk from fluoroscopically guided percutaneous transluminal angioplasty and stenting in the abdominal region. Eur Radiol 17(9):2359–2367CrossRef Stratakis J, Damilakis J, Tsetis D, Gourtsoyiannis N (2007) Radiation dose and risk from fluoroscopically guided percutaneous transluminal angioplasty and stenting in the abdominal region. Eur Radiol 17(9):2359–2367CrossRef
30.
go back to reference Hidajat N, Wust P, Felix R, Schröder RJ (2006) Radiation exposure to patient and staff in hepatic chemoembolization: risk estimation of cancer and deterministic effects. Cardiovasc Intervent Radiol 29(5):791–796CrossRef Hidajat N, Wust P, Felix R, Schröder RJ (2006) Radiation exposure to patient and staff in hepatic chemoembolization: risk estimation of cancer and deterministic effects. Cardiovasc Intervent Radiol 29(5):791–796CrossRef
31.
go back to reference Lange HW, von Boetticher H (2006) Randomized comparison of operator radiation exposure during coronary angiography and intervention by radial or femoral approach. Catheter Cardiovasc Interv 67(1):12–16CrossRef Lange HW, von Boetticher H (2006) Randomized comparison of operator radiation exposure during coronary angiography and intervention by radial or femoral approach. Catheter Cardiovasc Interv 67(1):12–16CrossRef
32.
go back to reference Karpelson M, Wei G-Y, Wood RJ (2012) Driving high voltage piezoelectric actuators in microrobotic applications. Sens Actuators, A 176:78–89CrossRef Karpelson M, Wei G-Y, Wood RJ (2012) Driving high voltage piezoelectric actuators in microrobotic applications. Sens Actuators, A 176:78–89CrossRef
33.
go back to reference Flynn AM, Tavrow LS, Bart SF, Brooks RA, Ehrlich DJ, Udayakumar KR, Cross LE (1990) Piezoelectric micromotors for microrobots. In: IEEE symposium on ultrasonics, 1990. IEEE, pp 1163–1172 Flynn AM, Tavrow LS, Bart SF, Brooks RA, Ehrlich DJ, Udayakumar KR, Cross LE (1990) Piezoelectric micromotors for microrobots. In: IEEE symposium on ultrasonics, 1990. IEEE, pp 1163–1172
34.
go back to reference Kosa G, Shoham M, Zaaroor M (2007) Propulsion method for swimming microrobots. IEEE Trans Rob 23(1):137–150CrossRef Kosa G, Shoham M, Zaaroor M (2007) Propulsion method for swimming microrobots. IEEE Trans Rob 23(1):137–150CrossRef
35.
go back to reference Donald BR, Levey CG, McGray CD, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable MEMS micro-robot. J Microelectromech Syst 15(1):1–15CrossRef Donald BR, Levey CG, McGray CD, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable MEMS micro-robot. J Microelectromech Syst 15(1):1–15CrossRef
36.
go back to reference Ebefors T, Mattsson JU, Kälvesten E, Stemme G (1999) A walking silicon micro-robot. In: Proceedings of transducers’ 99, 1999. pp 1202–1205 Ebefors T, Mattsson JU, Kälvesten E, Stemme G (1999) A walking silicon micro-robot. In: Proceedings of transducers’ 99, 1999. pp 1202–1205
37.
go back to reference Bonvilain A, Chaillet N (2003) Microfabricated thermally actuated microrobot. In: 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), 2003. IEEE, pp 2960–2965 Bonvilain A, Chaillet N (2003) Microfabricated thermally actuated microrobot. In: 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), 2003. IEEE, pp 2960–2965
38.
go back to reference Erdem EY, Chen Y-M, Mohebbi M, Suh JW, Kovacs GT, Darling RB, Bohringer KF (2010) Thermally actuated omnidirectional walking microrobot. J Microelectromech Syst 19(3):433–442CrossRef Erdem EY, Chen Y-M, Mohebbi M, Suh JW, Kovacs GT, Darling RB, Bohringer KF (2010) Thermally actuated omnidirectional walking microrobot. J Microelectromech Syst 19(3):433–442CrossRef
39.
go back to reference Glückstad J, Villangca MJ, Palima DZ, Bañas A (2017) Light-actuated microrobots for biomedical science. Spie Newsroom, BellinghamCrossRef Glückstad J, Villangca MJ, Palima DZ, Bañas A (2017) Light-actuated microrobots for biomedical science. Spie Newsroom, BellinghamCrossRef
40.
go back to reference Palima D, Glückstad J (2013) Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev 7(4):478–494CrossRef Palima D, Glückstad J (2013) Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev 7(4):478–494CrossRef
41.
go back to reference Singh DP, Uspal WE, Popescu MN, Wilson LG, Fischer P (2018) Photogravitactic microswimmers. Adv Func Mater 28(25):1706660CrossRef Singh DP, Uspal WE, Popescu MN, Wilson LG, Fischer P (2018) Photogravitactic microswimmers. Adv Func Mater 28(25):1706660CrossRef
42.
go back to reference Hu W, Ishii KS, Fan Q, Ohta AT (2012) Hydrogel microrobots actuated by optically generated vapour bubbles. Lab Chip 12(19):3821–3826CrossRef Hu W, Ishii KS, Fan Q, Ohta AT (2012) Hydrogel microrobots actuated by optically generated vapour bubbles. Lab Chip 12(19):3821–3826CrossRef
43.
go back to reference Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak AF, Sourjik V, Sitti M (2018) Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci Robot 3(17):eaar4423CrossRef Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak AF, Sourjik V, Sitti M (2018) Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci Robot 3(17):eaar4423CrossRef
44.
go back to reference Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M (2014) Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano 8(5):5049–5060CrossRef Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M (2014) Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano 8(5):5049–5060CrossRef
45.
go back to reference Behkam B, Sitti M (2007) Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 90(2):023902CrossRef Behkam B, Sitti M (2007) Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 90(2):023902CrossRef
46.
go back to reference Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14):1688–1692CrossRef Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14):1688–1692CrossRef
47.
go back to reference Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 4(11):eaat4388CrossRef Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 4(11):eaat4388CrossRef
48.
go back to reference Diller E, Sitti M (2014) Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Func Mater 24(28):4397–4404CrossRef Diller E, Sitti M (2014) Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Func Mater 24(28):4397–4404CrossRef
49.
go back to reference Kim S, Lee S, Lee J, Nelson BJ, Zhang L, Choi H (2016) Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci Rep 6:30713CrossRef Kim S, Lee S, Lee J, Nelson BJ, Zhang L, Choi H (2016) Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci Rep 6:30713CrossRef
50.
go back to reference Hu W, Lum GZ, Mastrangeli M, Sitti M (2018) Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690):81CrossRef Hu W, Lum GZ, Mastrangeli M, Sitti M (2018) Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690):81CrossRef
51.
go back to reference Chautems C, Lyttle S, Boehler Q, Nelson BJ (2018) Design and evaluation of a steerable magnetic sheath for cardiac ablations. IEEE Robot Autom Lett 3(3):2123–2128CrossRef Chautems C, Lyttle S, Boehler Q, Nelson BJ (2018) Design and evaluation of a steerable magnetic sheath for cardiac ablations. IEEE Robot Autom Lett 3(3):2123–2128CrossRef
52.
go back to reference Jeon S, Hoshiar AK, Kim S, Lee S, Kim E, Lee S, Kim K, Lee J, Kim J-y, Choi H (2018) Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro Nano Syst Lett 6(1):15CrossRef Jeon S, Hoshiar AK, Kim S, Lee S, Kim E, Lee S, Kim K, Lee J, Kim J-y, Choi H (2018) Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro Nano Syst Lett 6(1):15CrossRef
53.
go back to reference Ren Z, Hu W, Dong X, Sitti M (2019) Multi-functional soft-bodied jellyfish-like swimming. Nature. Communications 10(1):1–12CrossRef Ren Z, Hu W, Dong X, Sitti M (2019) Multi-functional soft-bodied jellyfish-like swimming. Nature. Communications 10(1):1–12CrossRef
54.
go back to reference Silva AKA, Silva EL, Egito EST, Carriço AS (2006) Safety concerns related to magnetic field exposure. Radiat Environ Biophys 45(4):245–252CrossRef Silva AKA, Silva EL, Egito EST, Carriço AS (2006) Safety concerns related to magnetic field exposure. Radiat Environ Biophys 45(4):245–252CrossRef
55.
go back to reference Nguyen BL, Merino JL, Gang ES (2010) Remote navigation for ablation procedures–a new step forward in the treatment of cardiac arrhythmias. Eur Cardiol 6(3):50–56CrossRef Nguyen BL, Merino JL, Gang ES (2010) Remote navigation for ablation procedures–a new step forward in the treatment of cardiac arrhythmias. Eur Cardiol 6(3):50–56CrossRef
56.
go back to reference Petrů J, Škoda J (2012) Robot-assisted navigation in atrial fibrillation ablation—of any benefits? Cor et Vasa. 54(6):e408–e413CrossRef Petrů J, Škoda J (2012) Robot-assisted navigation in atrial fibrillation ablation—of any benefits? Cor et Vasa. 54(6):e408–e413CrossRef
57.
go back to reference Chautems C, Zeydan B, Charreyron S, Chatzipirpiridis G, Pane S, Nelson BJ (2017) Magnetically powered microrobots: a medical revolution underway? Eur J Cardiothorac Surg 51(3):405–407 Chautems C, Zeydan B, Charreyron S, Chatzipirpiridis G, Pane S, Nelson BJ (2017) Magnetically powered microrobots: a medical revolution underway? Eur J Cardiothorac Surg 51(3):405–407
58.
go back to reference Jiles D (2015) Introduction to magnetism and magnetic materials. CRC Press, Boca Raton Jiles D (2015) Introduction to magnetism and magnetic materials. CRC Press, Boca Raton
59.
go back to reference Furlani EP (2001) Permanent magnet and electromechanical devices: materials, analysis, and applications. Academic Press, Cambridge Furlani EP (2001) Permanent magnet and electromechanical devices: materials, analysis, and applications. Academic Press, Cambridge
60.
go back to reference Liu C (2012) Foundations of MEMS. Pearson Education, London Liu C (2012) Foundations of MEMS. Pearson Education, London
61.
go back to reference Ryan P, Diller E (2016) Five-degree-of-freedom magnetic control of micro-robots using rotating permanent magnets. In: 2016 IEEE international conference on robotics and automation (ICRA), 2016. IEEE, pp 1731–1736 Ryan P, Diller E (2016) Five-degree-of-freedom magnetic control of micro-robots using rotating permanent magnets. In: 2016 IEEE international conference on robotics and automation (ICRA), 2016. IEEE, pp 1731–1736
62.
go back to reference Boskma KJ, Scheggi S, Misra S (2016) Closed-loop control of a magnetically-actuated catheter using two-dimensional ultrasound images. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob), 2016. IEEE, pp 61–66 Boskma KJ, Scheggi S, Misra S (2016) Closed-loop control of a magnetically-actuated catheter using two-dimensional ultrasound images. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob), 2016. IEEE, pp 61–66
63.
go back to reference Salmanipour S, Diller E (2018) Eight-degrees-of-freedom remote actuation of small magnetic mechanisms. In: 2018 IEEE international conference on robotics and automation (ICRA), 2018. IEEE, pp 1–6 Salmanipour S, Diller E (2018) Eight-degrees-of-freedom remote actuation of small magnetic mechanisms. In: 2018 IEEE international conference on robotics and automation (ICRA), 2018. IEEE, pp 1–6
64.
go back to reference Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: 2008 IEEE international conference on robotics and automation, 2008. IEEE, pp 419–424 Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: 2008 IEEE international conference on robotics and automation, 2008. IEEE, pp 419–424
65.
go back to reference Ernst S, Ouyang F, Linder C, Hertting K, Stahl F, Chun J, Hachiya H, Bänsch D, Antz M, Kuck K-H (2004) Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation 109(12):1472–1475CrossRef Ernst S, Ouyang F, Linder C, Hertting K, Stahl F, Chun J, Hachiya H, Bänsch D, Antz M, Kuck K-H (2004) Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation 109(12):1472–1475CrossRef
66.
go back to reference Ernst S, Ouyang F, Linder C, Hertting K, Stahl F, Chun J, Hachiya H, Krumsdorf U, Antz M, Kuck K-H (2004) Modulation of the slow pathway in the presence of a persistent left superior caval vein using the novel magnetic navigation system Niobe. EP Eur 6(1):10–14 Ernst S, Ouyang F, Linder C, Hertting K, Stahl F, Chun J, Hachiya H, Krumsdorf U, Antz M, Kuck K-H (2004) Modulation of the slow pathway in the presence of a persistent left superior caval vein using the novel magnetic navigation system Niobe. EP Eur 6(1):10–14
67.
go back to reference Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, Sora N, Sala S, Marzi A, Augello G (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47(7):1390–1400CrossRef Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, Sora N, Sala S, Marzi A, Augello G (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47(7):1390–1400CrossRef
68.
go back to reference Chun JK-R, Ernst S, Matthews S, Schmidt B, Bansch D, Boczor S, Ujeyl A, Antz M, Ouyang F, Kuck K-H (2007) Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory. Eur Heart J 28(2):190–195CrossRef Chun JK-R, Ernst S, Matthews S, Schmidt B, Bansch D, Boczor S, Ujeyl A, Antz M, Ouyang F, Kuck K-H (2007) Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory. Eur Heart J 28(2):190–195CrossRef
69.
go back to reference Di Biase L, Fahmy TS, Patel D, Bai R, Civello K, Wazni OM, Kanj M, Elayi CS, Ching CK, Khan M (2007) Remote magnetic navigation: human experience in pulmonary vein ablation. J Am Coll Cardiol 50(9):868–874CrossRef Di Biase L, Fahmy TS, Patel D, Bai R, Civello K, Wazni OM, Kanj M, Elayi CS, Ching CK, Khan M (2007) Remote magnetic navigation: human experience in pulmonary vein ablation. J Am Coll Cardiol 50(9):868–874CrossRef
70.
go back to reference Carpi F, Pappone C (2009) Stereotaxis Niobe® magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Rev Med Dev 6(5):487–498CrossRef Carpi F, Pappone C (2009) Stereotaxis Niobe® magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Rev Med Dev 6(5):487–498CrossRef
71.
go back to reference Atmakuri SR, Lev EI, Alviar C, Ibarra E, Raizner AE, Solomon SL, Kleiman NS (2006) Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. J Am Coll Cardiol 47(3):515–521CrossRef Atmakuri SR, Lev EI, Alviar C, Ibarra E, Raizner AE, Solomon SL, Kleiman NS (2006) Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. J Am Coll Cardiol 47(3):515–521CrossRef
72.
go back to reference Thornton AS, Jordaens LJ (2006) Remote magnetic navigation for mapping and ablating right ventricular outflow tract tachycardia. Heart Rhythm 3(6):691–696CrossRef Thornton AS, Jordaens LJ (2006) Remote magnetic navigation for mapping and ablating right ventricular outflow tract tachycardia. Heart Rhythm 3(6):691–696CrossRef
73.
go back to reference Choi MS, Oh Y-S, Jang SW, Kim JH, Shin WS, Youn H-J, Jung WS, Lee MY, Seong KB (2011) Comparison of magnetic navigation system and conventional method in catheter ablation of atrial fibrillation: is magnetic navigation system is more effective and safer than conventional method? Korean Circul J 41(5):248–252CrossRef Choi MS, Oh Y-S, Jang SW, Kim JH, Shin WS, Youn H-J, Jung WS, Lee MY, Seong KB (2011) Comparison of magnetic navigation system and conventional method in catheter ablation of atrial fibrillation: is magnetic navigation system is more effective and safer than conventional method? Korean Circul J 41(5):248–252CrossRef
74.
go back to reference Kiemeneij F, Patterson MS, Amoroso G, Laarman G, Slagboom T (2008) Use of the Stereotaxis Niobe® magnetic navigation system for percutaneous coronary intervention: results from 350 consecutive patients. Catheter Cardiovasc Interv 71(4):510–516CrossRef Kiemeneij F, Patterson MS, Amoroso G, Laarman G, Slagboom T (2008) Use of the Stereotaxis Niobe® magnetic navigation system for percutaneous coronary intervention: results from 350 consecutive patients. Catheter Cardiovasc Interv 71(4):510–516CrossRef
75.
go back to reference Armacost MP, Adair J, Munger T, Viswanathan RR, Creighton FM, Curd DT, Sehra R (2007) Accurate and reproducible target navigation with the stereotaxis Niobe® magnetic navigation system. J Cardiovasc Electrophysiol 18:S26–S31CrossRef Armacost MP, Adair J, Munger T, Viswanathan RR, Creighton FM, Curd DT, Sehra R (2007) Accurate and reproducible target navigation with the stereotaxis Niobe® magnetic navigation system. J Cardiovasc Electrophysiol 18:S26–S31CrossRef
76.
go back to reference Tsuchida K, García-García HM, van der Giessen WJ, McFadden EP, van der Ent M, Sianos G, Meulenbrug H, Ong AT, Serruys PW (2006) Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience. Catheter Cardiovasc Interv 67(3):356–363CrossRef Tsuchida K, García-García HM, van der Giessen WJ, McFadden EP, van der Ent M, Sianos G, Meulenbrug H, Ong AT, Serruys PW (2006) Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience. Catheter Cardiovasc Interv 67(3):356–363CrossRef
77.
go back to reference Elrod J (2017) A new option for catheter guidance control and imaging. EPLab Digest, Devault Elrod J (2017) A new option for catheter guidance control and imaging. EPLab Digest, Devault
78.
go back to reference Gang ES, Nguyen BL, Shachar Y, Farkas L, Farkas L, Marx B, Johnson D, Fishbein MC, Gaudio C, Kim S (2011) Dynamically shaped magnetic fields: initial animal validation of a new remote electrophysiology catheter guidance and control system. Circul Arrhythm Electrophysiol 4(5):770–777CrossRef Gang ES, Nguyen BL, Shachar Y, Farkas L, Farkas L, Marx B, Johnson D, Fishbein MC, Gaudio C, Kim S (2011) Dynamically shaped magnetic fields: initial animal validation of a new remote electrophysiology catheter guidance and control system. Circul Arrhythm Electrophysiol 4(5):770–777CrossRef
79.
go back to reference Nguyen BL, Merino JL, Shachar Y, Estrada A, Doiny D, Castrejon S, Marx B, Johnson D, Marfori W, Gang ES (2013) Non-fluoroscopic transseptal catheterization during electrophysiology procedures using a remote magnetic navigation system. J Atr Fibrillation 6(4):963 Nguyen BL, Merino JL, Shachar Y, Estrada A, Doiny D, Castrejon S, Marx B, Johnson D, Marfori W, Gang ES (2013) Non-fluoroscopic transseptal catheterization during electrophysiology procedures using a remote magnetic navigation system. J Atr Fibrillation 6(4):963
80.
go back to reference Filgueiras-Rama D, Estrada A, Shachar J, Castrejón S, Doiny D, Ortega M, Gang E, Merino JL (2013) Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures. JoVE 74:e3658 Filgueiras-Rama D, Estrada A, Shachar J, Castrejón S, Doiny D, Ortega M, Gang E, Merino JL (2013) Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures. JoVE 74:e3658
81.
go back to reference Moya À, Sancho-Tello MJ, Arenal Á, Fidalgo ML, Brugada R, Ferrer JM, Merino JL, Mateas FR, Mont JLJREdC (2013) Innovations in heart rhythm disturbances: cardiac electrophysiology. Arrhythm Cardiac Pacing 66(2):116–123 Moya À, Sancho-Tello MJ, Arenal Á, Fidalgo ML, Brugada R, Ferrer JM, Merino JL, Mateas FR, Mont JLJREdC (2013) Innovations in heart rhythm disturbances: cardiac electrophysiology. Arrhythm Cardiac Pacing 66(2):116–123
82.
go back to reference Chautems C, Tonazzini A, Floreano D, Nelson BJ (2017) A variable stiffness catheter controlled with an external magnetic field. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2017. IEEE, pp 181–186 Chautems C, Tonazzini A, Floreano D, Nelson BJ (2017) A variable stiffness catheter controlled with an external magnetic field. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2017. IEEE, pp 181–186
83.
go back to reference Chautems C, Nelson BJ (2017) The tethered magnet: force and 5-DOF pose control for cardiac ablation. In: 2017 IEEE international conference on robotics and automation (ICRA), 2017. IEEE, pp 4837–4842 Chautems C, Nelson BJ (2017) The tethered magnet: force and 5-DOF pose control for cardiac ablation. In: 2017 IEEE international conference on robotics and automation (ICRA), 2017. IEEE, pp 4837–4842
84.
go back to reference Li S, Zhao H, Shepherd RF (2017) Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bull 42(2):138–142CrossRef Li S, Zhao H, Shepherd RF (2017) Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bull 42(2):138–142CrossRef
85.
go back to reference Lin H-T, Leisk GG, Trimmer B (2011) GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomim 6(2):026007CrossRef Lin H-T, Leisk GG, Trimmer B (2011) GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomim 6(2):026007CrossRef
86.
go back to reference Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem Int Ed 50(8):1890–1895CrossRef Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem Int Ed 50(8):1890–1895CrossRef
87.
go back to reference Kratochvil BE, Kummer MP, Erni S, Borer R, Frutiger DR, Schürle S, Nelson BJ (2014) MiniMag: a hemispherical electromagnetic system for 5-DOF wireless micromanipulation. In: Experimental Robotics, 2014. Springer, Berlin, pp 317–329 Kratochvil BE, Kummer MP, Erni S, Borer R, Frutiger DR, Schürle S, Nelson BJ (2014) MiniMag: a hemispherical electromagnetic system for 5-DOF wireless micromanipulation. In: Experimental Robotics, 2014. Springer, Berlin, pp 317–329
88.
go back to reference Jeon S, Hoshiar AK, Kim K, Lee S, Kim E, Lee S, Kim J-y, Nelson BJ, Cha H-J, Yi B-J, Choi H (2019) A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot 6(1):54–68CrossRef Jeon S, Hoshiar AK, Kim K, Lee S, Kim E, Lee S, Kim J-y, Nelson BJ, Cha H-J, Yi B-J, Choi H (2019) A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot 6(1):54–68CrossRef
89.
go back to reference Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Rob 26(6):1006–1017CrossRef Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Rob 26(6):1006–1017CrossRef
90.
go back to reference Kim Y, Parada GA, Liu S, Zhao X (2019) Ferromagnetic soft continuum robots. Sci Robot 4(33):eaax7329 Kim Y, Parada GA, Liu S, Zhao X (2019) Ferromagnetic soft continuum robots. Sci Robot 4(33):eaax7329
91.
go back to reference Krings T, Finney J, Niggemann P, Reinacher P, Lück N, Drexler A, Lovell J, Meyer A, Sehra R, Schauerte P (2006) Magnetic versus manual guidewire manipulation in neuroradiology: in vitro results. Neuroradiology 48(6):394–401CrossRef Krings T, Finney J, Niggemann P, Reinacher P, Lück N, Drexler A, Lovell J, Meyer A, Sehra R, Schauerte P (2006) Magnetic versus manual guidewire manipulation in neuroradiology: in vitro results. Neuroradiology 48(6):394–401CrossRef
92.
go back to reference Lalande V, Gosselin FP, Vonthron M, Conan B, Tremblay C, Beaudoin G, Soulez G, Martel S (2015) In vivo demonstration of magnetic guidewire steerability in a MRI system with additional gradient coils. Med Phys 42(2):969–976CrossRef Lalande V, Gosselin FP, Vonthron M, Conan B, Tremblay C, Beaudoin G, Soulez G, Martel S (2015) In vivo demonstration of magnetic guidewire steerability in a MRI system with additional gradient coils. Med Phys 42(2):969–976CrossRef
93.
go back to reference Faddis MN, Blume W, Finney J, Hall A, Rauch J, Sell J, Bae KT, Talcott M, Lindsay B (2002) Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106(23):2980–2985CrossRef Faddis MN, Blume W, Finney J, Hall A, Rauch J, Sell J, Bae KT, Talcott M, Lindsay B (2002) Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106(23):2980–2985CrossRef
94.
go back to reference Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH (1998) Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat 193(1):105–119CrossRef Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH (1998) Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat 193(1):105–119CrossRef
95.
go back to reference Miyazaki S, Shah AJ, Xhaët O, Derval N, Matsuo S, Wright M, Nault I, Forclaz A, Jadidi AS, Knecht S (2010) Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circul Arrhythm Electrophysiol 3(6):585–589CrossRef Miyazaki S, Shah AJ, Xhaët O, Derval N, Matsuo S, Wright M, Nault I, Forclaz A, Jadidi AS, Knecht S (2010) Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circul Arrhythm Electrophysiol 3(6):585–589CrossRef
96.
go back to reference Vollmann D, Lüthje L, Seegers J, Hasenfuss G, Zabel M (2009) Remote magnetic catheter navigation for cavotricuspid isthmus ablation in patients with common-type atrial flutter. Circul Arrhythm Electrophysiol 2(6):603–610CrossRef Vollmann D, Lüthje L, Seegers J, Hasenfuss G, Zabel M (2009) Remote magnetic catheter navigation for cavotricuspid isthmus ablation in patients with common-type atrial flutter. Circul Arrhythm Electrophysiol 2(6):603–610CrossRef
97.
go back to reference Gosselin FP, Lalande V, Martel S (2011) Characterization of the deflections of a catheter steered using a magnetic resonance imaging system. Med Phys 38(9):4994–5002CrossRef Gosselin FP, Lalande V, Martel S (2011) Characterization of the deflections of a catheter steered using a magnetic resonance imaging system. Med Phys 38(9):4994–5002CrossRef
98.
go back to reference Vonthron M, Lalande V, Bringout G, Tremblay C, Martel S (2011) A MRI-based integrated platform for the navigation of micro-devices and microrobots. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, 2011. IEEE, pp 1285–1290 Vonthron M, Lalande V, Bringout G, Tremblay C, Martel S (2011) A MRI-based integrated platform for the navigation of micro-devices and microrobots. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, 2011. IEEE, pp 1285–1290
99.
go back to reference Losey AD, Lillaney P, Martin AJ, Cooke DL, Wilson MW, Thorne BR, Sincic RS, Arenson RL, Saeed M, Hetts SW (2014) Magnetically assisted remote-controlled endovascular catheter for interventional MR imaging: in vitro navigation at 1.5 T versus x-ray fluoroscopy. Radiology 271(3):862–869CrossRef Losey AD, Lillaney P, Martin AJ, Cooke DL, Wilson MW, Thorne BR, Sincic RS, Arenson RL, Saeed M, Hetts SW (2014) Magnetically assisted remote-controlled endovascular catheter for interventional MR imaging: in vitro navigation at 1.5 T versus x-ray fluoroscopy. Radiology 271(3):862–869CrossRef
100.
go back to reference Le VN, Nguyen NH, Alameh K, Weerasooriya R, Pratten P (2016) Accurate modeling and positioning of a magnetically controlled catheter tip. Med Phys 43(2):650–663CrossRef Le VN, Nguyen NH, Alameh K, Weerasooriya R, Pratten P (2016) Accurate modeling and positioning of a magnetically controlled catheter tip. Med Phys 43(2):650–663CrossRef
101.
go back to reference Chautems C, Tonazzini A, Boehler Q, Jeong SH, Floreano D, Nelson BJ (2019) Magnetic continuum device with variable stiffness for minimally invasive surgery. Advanced Intelligent Systems 1900086 Chautems C, Tonazzini A, Boehler Q, Jeong SH, Floreano D, Nelson BJ (2019) Magnetic continuum device with variable stiffness for minimally invasive surgery. Advanced Intelligent Systems 1900086
102.
go back to reference Bonow RO, Eckel RH (2003) Diet, obesity, and cardiovascular risk. N Engl J Med 348(21):2057–2133CrossRef Bonow RO, Eckel RH (2003) Diet, obesity, and cardiovascular risk. N Engl J Med 348(21):2057–2133CrossRef
103.
go back to reference Smith SC, Collins A, Ferrari R, Holmes DR, Logstrup S, McGhie DV, Ralston J, Sacco RL, Stam H, Taubert K (2012) Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J Am Coll Cardiol 60(22):2343–2348CrossRef Smith SC, Collins A, Ferrari R, Holmes DR, Logstrup S, McGhie DV, Ralston J, Sacco RL, Stam H, Taubert K (2012) Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J Am Coll Cardiol 60(22):2343–2348CrossRef
104.
go back to reference Siri-Tarino PW, Sun Q, Hu FB, Krauss RM (2010) Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 91(3):502–509CrossRef Siri-Tarino PW, Sun Q, Hu FB, Krauss RM (2010) Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 91(3):502–509CrossRef
105.
go back to reference Mozaffarian D, Capewell S (2011) United Nations’ dietary policies to prevent cardiovascular disease. British Medical Journal Publishing Group, LondonCrossRef Mozaffarian D, Capewell S (2011) United Nations’ dietary policies to prevent cardiovascular disease. British Medical Journal Publishing Group, LondonCrossRef
Metadata
Title
A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions
Authors
Junsun Hwang
Jin-young Kim
Hongsoo Choi
Publication date
21-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Intelligent Service Robotics
Print ISSN: 1861-2776
Electronic ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-020-00311-0