Skip to main content
Top

2017 | OriginalPaper | Chapter

7. A Review of Nanoceramic Materials for Use in Ceramic Matrix Composites

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoceramics are traditionally used in small-scale electronics application, but other more recent uses include larger strength-providing materials like those in aircraft engines and aerospace technology. Ceramics have recently become an ideal candidate for applications that require high temperature, high chemical resistivity, oxidation resistance, and high thermal conductivity; however, these applications are limited by the inherent brittle nature of ceramics. One step in overcoming this issue is through the use of ceramic matrix composites (CMCs), including fiber-reinforced CMCs. These systems are made up of three components, each made of nanoceramic materials. The inner reinforcing fiber, typically fabricated from polymer-derived ceramics, is composed of amorphous to nanocrystalline ceramic, and provides strength and durability for the composite. The fiber is then coated with an interface, typically applied through chemical vapor deposition. This interface allows for strengthening mechanisms in the composite including crack deflection and fiber pullout. The final component of the composite is the matrix, or the bulk material. This nanoceramic material is also produced using chemical vapor deposition and provides the bulk material and strength for the composite. This review gives an overview of continuous fiber-reinforced ceramic matrix composites made with chemical vapor deposited nanoceramics. Despite this non-traditional application of nanoceramics, these materials exhibit incredibly desirable characteristics for use in high temperature and high strength applications like those in the aircraft and engine industries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sutka A, Gross KA (2016) Spinel ferrite oxide semiconductor gas sensors. Sens Actuators B: Chem 222:95–105 Sutka A, Gross KA (2016) Spinel ferrite oxide semiconductor gas sensors. Sens Actuators B: Chem 222:95–105
2.
go back to reference Tao Z, Yan L, Qiao J, Wang B, Zhang L, Zhang J (2015) A review of advanced proton-conducting materials for hydrogen separation. Prog Mater Sci 74:1–50CrossRef Tao Z, Yan L, Qiao J, Wang B, Zhang L, Zhang J (2015) A review of advanced proton-conducting materials for hydrogen separation. Prog Mater Sci 74:1–50CrossRef
3.
go back to reference Srivastava V, Gusain D, Sharma YC (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–6233CrossRef Srivastava V, Gusain D, Sharma YC (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–6233CrossRef
4.
go back to reference Groen WA, Van Hall PF, Kraan MJ, Sweegers N, De With G (1995) Preparation and properties of ALCON (Al28C6O21N6) ceramics. J Mater Sci 30:4775–4780CrossRef Groen WA, Van Hall PF, Kraan MJ, Sweegers N, De With G (1995) Preparation and properties of ALCON (Al28C6O21N6) ceramics. J Mater Sci 30:4775–4780CrossRef
5.
go back to reference Kidalov Sergey V, Shakhov Fedor M (2009) Thermal conductivity of diamond composites. Materials 2:2467–2495CrossRef Kidalov Sergey V, Shakhov Fedor M (2009) Thermal conductivity of diamond composites. Materials 2:2467–2495CrossRef
6.
go back to reference Wang XH, Chen IW, Deng XY, Wang YD, Li LT (2015) New progress in development of ferroelectric and piezoelectric nanoceramics. J Adv Ceram 4:1–21CrossRef Wang XH, Chen IW, Deng XY, Wang YD, Li LT (2015) New progress in development of ferroelectric and piezoelectric nanoceramics. J Adv Ceram 4:1–21CrossRef
7.
go back to reference Golla BR, Basu B (2014) Spark plasma sintering of nanoceramic composites. Compr Hard Mater 2:177–205 [Sarin V (ed)] Golla BR, Basu B (2014) Spark plasma sintering of nanoceramic composites. Compr Hard Mater 2:177–205 [Sarin V (ed)]
8.
go back to reference Backhaus-Ricoult M, Rustad J, Moore L, Smith C, Brown J (2014) Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation? Appl Phys A: Mater Sci Process 116:433–470CrossRef Backhaus-Ricoult M, Rustad J, Moore L, Smith C, Brown J (2014) Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation? Appl Phys A: Mater Sci Process 116:433–470CrossRef
9.
go back to reference Van der Biest O (2013) Nanoceramics: issues and opportunities. Int J Appl Ceram Technol 10:565–576CrossRef Van der Biest O (2013) Nanoceramics: issues and opportunities. Int J Appl Ceram Technol 10:565–576CrossRef
10.
go back to reference Kurapova OYu, Konakov VG, Golubev SN, Ushakov VM, Archakov IYu (2012) Cryochemical methods for manufacturing nanosized ceramics and ceramic precursor powders with low agglomeration degree: a review. Rev Adv Mater Sci 32:112–132 Kurapova OYu, Konakov VG, Golubev SN, Ushakov VM, Archakov IYu (2012) Cryochemical methods for manufacturing nanosized ceramics and ceramic precursor powders with low agglomeration degree: a review. Rev Adv Mater Sci 32:112–132
11.
go back to reference Arcos Daniel, Vallet-Regi Maria (2013) Bioceramics for drug delivery. Acta Mater 61:890–911CrossRef Arcos Daniel, Vallet-Regi Maria (2013) Bioceramics for drug delivery. Acta Mater 61:890–911CrossRef
12.
go back to reference Basiev TT, Basieva IT, Doroshenko ME (2013) Luminescent nanophotonics and advanced solid state lasers. J. Lumin 133:233–243CrossRef Basiev TT, Basieva IT, Doroshenko ME (2013) Luminescent nanophotonics and advanced solid state lasers. J. Lumin 133:233–243CrossRef
13.
go back to reference Vakifahmetoglu C (2011) Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: a review. Adv Appl Ceram 110:188–204CrossRef Vakifahmetoglu C (2011) Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: a review. Adv Appl Ceram 110:188–204CrossRef
14.
go back to reference Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837 Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837
15.
go back to reference Mubarak NM, Abdullah EC, Jayakumar NS, Sahu JN (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20:1186–1197CrossRef Mubarak NM, Abdullah EC, Jayakumar NS, Sahu JN (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20:1186–1197CrossRef
16.
go back to reference Kessler OH (2001) Heat treatment of CVD-coated tool steels. Surf Eng Ser Chem Vap Deposition 2:435–463 Kessler OH (2001) Heat treatment of CVD-coated tool steels. Surf Eng Ser Chem Vap Deposition 2:435–463
17.
go back to reference Mukhopadhyay A, Basu B (2009) Bulk nanoceramics and ceramic nanocomposites for structural applications. Handb Nanoceram Based Nanodevices 2:179–215 [Tseng TY, Nalwa HS (eds)] Mukhopadhyay A, Basu B (2009) Bulk nanoceramics and ceramic nanocomposites for structural applications. Handb Nanoceram Based Nanodevices 2:179–215 [Tseng TY, Nalwa HS (eds)]
18.
go back to reference Pavia F, Curtin WA (2013) Molecular modeling of cracks at interfaces in nanoceramic composites. J Mech Phys Solids 61:1971–1982CrossRef Pavia F, Curtin WA (2013) Molecular modeling of cracks at interfaces in nanoceramic composites. J Mech Phys Solids 61:1971–1982CrossRef
19.
go back to reference Kaya C, He JY, Gu X, Butler EG (2002) Nanostructured ceramic powders by hydrothermal synthesis and their applications. Microporous Mesoporous Mater 54:37–49CrossRef Kaya C, He JY, Gu X, Butler EG (2002) Nanostructured ceramic powders by hydrothermal synthesis and their applications. Microporous Mesoporous Mater 54:37–49CrossRef
20.
go back to reference Coons TP, Reutenauer JW, Richards G, Frueh S, Suib SL (2012) Characterization of a modified polyvinylsilazane preceramic polymer. J Am Ceram Soc 95:3339–3345CrossRef Coons TP, Reutenauer JW, Richards G, Frueh S, Suib SL (2012) Characterization of a modified polyvinylsilazane preceramic polymer. J Am Ceram Soc 95:3339–3345CrossRef
21.
go back to reference Ahmad Mohamad M (2015) Lithium ionic conduction and relaxation dynamics of spark plasma sintered Li5La3Ta2O12 garnet nanoceramics. Nanoscale Res Lett 10:1–10CrossRef Ahmad Mohamad M (2015) Lithium ionic conduction and relaxation dynamics of spark plasma sintered Li5La3Ta2O12 garnet nanoceramics. Nanoscale Res Lett 10:1–10CrossRef
22.
go back to reference Wang XH, Chen IW, Deng XY, Wang YD, Li LT (2015) New progress in development of ferroelectric and piezoelectric nanoceramic. J Adv Ceram 4:1–21CrossRef Wang XH, Chen IW, Deng XY, Wang YD, Li LT (2015) New progress in development of ferroelectric and piezoelectric nanoceramic. J Adv Ceram 4:1–21CrossRef
23.
go back to reference Mei L, Liu GH, He G, Wang LL, Li JT (2012) Controlled amorphous crystallization: an easy way to make transparent nanoceramics. Opt Mater 34:981–985CrossRef Mei L, Liu GH, He G, Wang LL, Li JT (2012) Controlled amorphous crystallization: an easy way to make transparent nanoceramics. Opt Mater 34:981–985CrossRef
24.
go back to reference Mueller V, Rasp M, Rathousky J, Schuetz B, Niederberger M, Fattakhova-Rohlfing D (2010) Transparent conducting films of antimony-doped tin oxide with uniform mesostructure assembled from preformed nanocrystals. Small 6:633–637CrossRef Mueller V, Rasp M, Rathousky J, Schuetz B, Niederberger M, Fattakhova-Rohlfing D (2010) Transparent conducting films of antimony-doped tin oxide with uniform mesostructure assembled from preformed nanocrystals. Small 6:633–637CrossRef
25.
go back to reference Gutkin MYu, Ovid’ko IA (2010) Plastic flow and fracture of amorphous intercrystalline layers in ceramic nanocomposites. Phys. Solid State 52:718–727CrossRef Gutkin MYu, Ovid’ko IA (2010) Plastic flow and fracture of amorphous intercrystalline layers in ceramic nanocomposites. Phys. Solid State 52:718–727CrossRef
26.
go back to reference Tepper F (2004) Electropositive ultrafilters. Am Biotechnol Lab 22:40–42 Tepper F (2004) Electropositive ultrafilters. Am Biotechnol Lab 22:40–42
27.
go back to reference Agrawal V, Kapoor S (2016) Effect of fiber reinforcement on microleakage of class II cavities restored with a novel G-aenial posterior composite, silorane composite, and nanohybrid composite: an in vitro comparative study. J Invest Clin Dent Agrawal V, Kapoor S (2016) Effect of fiber reinforcement on microleakage of class II cavities restored with a novel G-aenial posterior composite, silorane composite, and nanohybrid composite: an in vitro comparative study. J Invest Clin Dent
28.
go back to reference Huang J-L, Nayak PK (2013) Microstructure evolution and mechanical properties of silicon nitride based ceramics sintered by spark plasma sintering (SPS). Recent Adv Ceram Mater Res 177–214 [Rovira JJR, Rubi MS (eds)] Huang J-L, Nayak PK (2013) Microstructure evolution and mechanical properties of silicon nitride based ceramics sintered by spark plasma sintering (SPS). Recent Adv Ceram Mater Res 177–214 [Rovira JJR, Rubi MS (eds)]
29.
go back to reference Gadow R, Killinger A, Rempp A, Manzat A (2010) Advanced ceramic tribological layers by thermal spray routes. Adv Sci Technol 66:106–119 Gadow R, Killinger A, Rempp A, Manzat A (2010) Advanced ceramic tribological layers by thermal spray routes. Adv Sci Technol 66:106–119
30.
go back to reference Park JY, Jeong MH, Kim D, Kim WJ (2013) Effects of the surface roughness of a graphite substrate on the interlayer surface roughness of deposited SiC layer. J Korean Ceram Soc 50:122–126CrossRef Park JY, Jeong MH, Kim D, Kim WJ (2013) Effects of the surface roughness of a graphite substrate on the interlayer surface roughness of deposited SiC layer. J Korean Ceram Soc 50:122–126CrossRef
31.
go back to reference Rebillat F, Guette A, Naslain R, Brosse CR (1997) Highly ordered pyrolytic BN obtained by LPCVD. J Eur Ceram Soc 17:1403–1414CrossRef Rebillat F, Guette A, Naslain R, Brosse CR (1997) Highly ordered pyrolytic BN obtained by LPCVD. J Eur Ceram Soc 17:1403–1414CrossRef
32.
go back to reference Hill CL, Reutenauer JW, Arpin KA, Suib SL, Kmetz MA (2007) Interfacial processing via CVD for nicalon based ceramic matrix composites. Ceram Eng Sci Proc 27(3, Advanced Ceramic Coatings and Interfaces):253–264 Hill CL, Reutenauer JW, Arpin KA, Suib SL, Kmetz MA (2007) Interfacial processing via CVD for nicalon based ceramic matrix composites. Ceram Eng Sci Proc 27(3, Advanced Ceramic Coatings and Interfaces):253–264
33.
go back to reference Chang Y, Poterala S, Yener D, Messing GL (2013) Fabrication of highly textured fine-grained α-alumina by templated grain growth of nanoscale precursors. J Am Ceram Soc 96:1390–1397CrossRef Chang Y, Poterala S, Yener D, Messing GL (2013) Fabrication of highly textured fine-grained α-alumina by templated grain growth of nanoscale precursors. J Am Ceram Soc 96:1390–1397CrossRef
34.
go back to reference Iyer A, Garofano JKM, Reutenaur J, Suib SL, Aindow M, Gell M, Jordan EH (2013) A sucrose-mediated sol-gel technique for the synthesis of MgO-Y2O3 nanocomposites. J Am Ceram Soc 96:346–350 Iyer A, Garofano JKM, Reutenaur J, Suib SL, Aindow M, Gell M, Jordan EH (2013) A sucrose-mediated sol-gel technique for the synthesis of MgO-Y2O3 nanocomposites. J Am Ceram Soc 96:346–350
35.
go back to reference Koch RJ, Lokuhewa IN, Shi J, Haluska MS, Misture ST (2012) Chemical synthesis of nanoscale Aurivillius ceramics, Bi2A2TiM2O12 (A = Ca, Sr, Ba and M = Nb, Ta). J Sol-Gel Sci Technol 64:612–618CrossRef Koch RJ, Lokuhewa IN, Shi J, Haluska MS, Misture ST (2012) Chemical synthesis of nanoscale Aurivillius ceramics, Bi2A2TiM2O12 (A = Ca, Sr, Ba and M = Nb, Ta). J Sol-Gel Sci Technol 64:612–618CrossRef
36.
go back to reference Espinal L, Malinger KA, Espinal AE, Gaffney AM, Suib SL (2007) Preparation of multicomponents metal oxides using nozzle spray and microwaves. Adv Funct Mater 17:2572–2579CrossRef Espinal L, Malinger KA, Espinal AE, Gaffney AM, Suib SL (2007) Preparation of multicomponents metal oxides using nozzle spray and microwaves. Adv Funct Mater 17:2572–2579CrossRef
37.
go back to reference Karupasamy K, Linda T, Thanikaikarasan S, Balakumar S, Mahalingam T, Sebastian PJ, Shajan XS (2013) Electrical and dielectric behavior of nano-bio ceramic filler incorporated polymer electrolytes for rechargeable lithium batteries. J New Mater Electrochem Syst 16:115–120 Karupasamy K, Linda T, Thanikaikarasan S, Balakumar S, Mahalingam T, Sebastian PJ, Shajan XS (2013) Electrical and dielectric behavior of nano-bio ceramic filler incorporated polymer electrolytes for rechargeable lithium batteries. J New Mater Electrochem Syst 16:115–120
38.
go back to reference Huang CK (2006) Filling and wear behaviors of micro-molded parts made with nanomaterials. Eur Polym J 42:2174–2184CrossRef Huang CK (2006) Filling and wear behaviors of micro-molded parts made with nanomaterials. Eur Polym J 42:2174–2184CrossRef
39.
go back to reference Kaya C, Trusty PA, Ponton CB (1998) Electrophoretic filtration deposition (EFD) of Saffil alumina fibre-reinforced mullite multilayer nano-ceramic matrix composites. Ceram Trans 83:399–406 Kaya C, Trusty PA, Ponton CB (1998) Electrophoretic filtration deposition (EFD) of Saffil alumina fibre-reinforced mullite multilayer nano-ceramic matrix composites. Ceram Trans 83:399–406
40.
go back to reference Candelario VM, Moreno R, Shen Z, Ortiz AL (2015) Aqueous colloidal processing of nano-SiC and its nano-Y3Al5O12 liquid-phase sintering additives with carbon nanotubes. J Eur Ceram Soc 35:3363–3368CrossRef Candelario VM, Moreno R, Shen Z, Ortiz AL (2015) Aqueous colloidal processing of nano-SiC and its nano-Y3Al5O12 liquid-phase sintering additives with carbon nanotubes. J Eur Ceram Soc 35:3363–3368CrossRef
41.
go back to reference Kocjan A, Pouchly V, Shen Z (2015) Processing of zirconia nanoceramics from a coarse powder. J Eur Ceram Soc 35:1285–1295CrossRef Kocjan A, Pouchly V, Shen Z (2015) Processing of zirconia nanoceramics from a coarse powder. J Eur Ceram Soc 35:1285–1295CrossRef
42.
go back to reference Hotza D, Garcia DE, Castro RHR (2015) Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering. Int Mater Rev 60:357–379CrossRef Hotza D, Garcia DE, Castro RHR (2015) Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering. Int Mater Rev 60:357–379CrossRef
43.
go back to reference Li J, Yao B, Xu D, Huang Z, Wang Z, Wu X, Fan C (2016) Low temperature sintering and microwave dielectric properties of 0.4Nd(Zn0.5Ti0.5)O3–0.6Ca0.61Nd0.26TiO3 ceramics with BaCu(B2O5) additive. J Alloy Compd 663:494–500CrossRef Li J, Yao B, Xu D, Huang Z, Wang Z, Wu X, Fan C (2016) Low temperature sintering and microwave dielectric properties of 0.4Nd(Zn0.5Ti0.5)O3–0.6Ca0.61Nd0.26TiO3 ceramics with BaCu(B2O5) additive. J Alloy Compd 663:494–500CrossRef
44.
go back to reference Maitra S (2014) Nanoceramic matrix composites: types, processing and applications. Woodhead Publishing Ser Compos Sci Eng 45:27–40 Maitra S (2014) Nanoceramic matrix composites: types, processing and applications. Woodhead Publishing Ser Compos Sci Eng 45:27–40
45.
go back to reference Douglas KT, Bichenkova EV, Sardarian A (2001) Formation of intramolecular exciplexes on photoirradiation in water and use as labels for oligonucleotides, ceramics, or other entities. PCT Int Appl, WO 2001046121 A2 20010628 Douglas KT, Bichenkova EV, Sardarian A (2001) Formation of intramolecular exciplexes on photoirradiation in water and use as labels for oligonucleotides, ceramics, or other entities. PCT Int Appl, WO 2001046121 A2 20010628
46.
go back to reference Ghoreishi SM, Karamali E, Khoobi A Enhessari M (2015) Preparation of a manganese titanate nanosensor: application in electrochemical studies of captopril in the presence of para-aminobenzoic acid. Anal Biochem 487:49–58 Ghoreishi SM, Karamali E, Khoobi A Enhessari M (2015) Preparation of a manganese titanate nanosensor: application in electrochemical studies of captopril in the presence of para-aminobenzoic acid. Anal Biochem 487:49–58
47.
go back to reference Bhat KA, Leo PP, Manoharan N, Lakshmibai A, Sangeetha D (2013) Fabrication of polymethyl methacrylate/polysulfone/nanoceramic composites for orthopedic applications. J Appl Polym Sci 127:2764–2775CrossRef Bhat KA, Leo PP, Manoharan N, Lakshmibai A, Sangeetha D (2013) Fabrication of polymethyl methacrylate/polysulfone/nanoceramic composites for orthopedic applications. J Appl Polym Sci 127:2764–2775CrossRef
48.
go back to reference He J, Li X, Su D, Ji H, Wang XJ (2016) Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J Eur Ceram Soc 36:1487–1493CrossRef He J, Li X, Su D, Ji H, Wang XJ (2016) Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J Eur Ceram Soc 36:1487–1493CrossRef
Metadata
Title
A Review of Nanoceramic Materials for Use in Ceramic Matrix Composites
Author
Steven L. Suib
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-49512-5_7

Premium Partners