Skip to main content
Top
Published in: Journal of Materials Science 18/2021

19-03-2021 | Review

A review of recent progress on the silica aerogel monoliths: synthesis, reinforcement, and applications

Authors: Jiming Lin, Guangze Li, Wei Liu, Ruoxiang Qiu, Huanyi Wei, Kai Zong, Xingke Cai

Published in: Journal of Materials Science | Issue 18/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The silica aerogel monoliths (SAMs) with three-dimensional (3D) porous structures showing unique physical and chemical properties promise a new era of technologies. However, the critical challenge remains in these materials due to their poor mechanical properties in large-scale fabrication. Several attempts have been adopted to enhance the mechanical properties of SAMs to overcome this challenge and explore their applications in various communities. In this review, we introduce the general synthetic methods of SAMs and highlight the use of mechanical reinforcement strategies to improve their properties. Furthermore, the applications of SAMs in killer applications have been introduced, including heat and acoustic insulation, catalysis, and electronic devices. Critically, perspectives on the challenges and opportunities of SAMs are highlighted as potential targets for commercialization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741 Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741
2.
go back to reference Li C, Qiu L, Zhang B, Li D, Liu CY (2016) Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv Mater 28:1510–1516 Li C, Qiu L, Zhang B, Li D, Liu CY (2016) Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv Mater 28:1510–1516
3.
go back to reference Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661–664 Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661–664
4.
go back to reference Zhang X, Chang D, Liu J, Luo Y (2010) Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels. J Mater Chem 20:5080–5085 Zhang X, Chang D, Liu J, Luo Y (2010) Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels. J Mater Chem 20:5080–5085
5.
go back to reference Du R, Hu Y, Hübner R, Joswig JO, Fan X, Schneider K, Eychmüller A (2019) Specific ion effects directed noble metal aerogels: Versatile manipulation for electrocatalysis and beyond. Sci Adv 5:eaaw4590 Du R, Hu Y, Hübner R, Joswig JO, Fan X, Schneider K, Eychmüller A (2019) Specific ion effects directed noble metal aerogels: Versatile manipulation for electrocatalysis and beyond. Sci Adv 5:eaaw4590
6.
go back to reference Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chemie 124:2118–2121 Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chemie 124:2118–2121
7.
go back to reference Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74 Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74
8.
go back to reference Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:409310 Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:409310
9.
go back to reference Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F, Zhang T (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose-silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4:30453–30461 Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F, Zhang T (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose-silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4:30453–30461
10.
go back to reference Nadargi DY, Rao AV (2009) Methyltriethoxysilane: new precursor for synthesizing silica aerogels. J Alloys Compd 467:397–404 Nadargi DY, Rao AV (2009) Methyltriethoxysilane: new precursor for synthesizing silica aerogels. J Alloys Compd 467:397–404
11.
go back to reference Cui S, Liu Y, Fan MH, Cooper AT, Lin BL, Liu XY, Han GF, Shen XD (2011) Temperature dependent microstructure of MTES modified hydrophobic silica aerogels. Mater Lett 65:606–609 Cui S, Liu Y, Fan MH, Cooper AT, Lin BL, Liu XY, Han GF, Shen XD (2011) Temperature dependent microstructure of MTES modified hydrophobic silica aerogels. Mater Lett 65:606–609
12.
go back to reference Duan Y, Jana SC, Reinsel AM, Lama B, Espe MP (2012) Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes. Langmuir 28:15362–15371 Duan Y, Jana SC, Reinsel AM, Lama B, Espe MP (2012) Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes. Langmuir 28:15362–15371
13.
go back to reference Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) Flexible nanofiber-reinforced aerogel (Xerogel) synthesis, manufacture, and characterization. ACS Appl Mater Interfaces 1:2491–2501 Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) Flexible nanofiber-reinforced aerogel (Xerogel) synthesis, manufacture, and characterization. ACS Appl Mater Interfaces 1:2491–2501
14.
go back to reference Meador MAB, Vivod SL, McCorkle L, Quade D, Sullivan RM, Ghosn LJ, Clark N, Capadona LA (2008) Reinforcing polymer cross-linked aerogels with carbon nanofibers. J Mater Chem 18:1843–1852 Meador MAB, Vivod SL, McCorkle L, Quade D, Sullivan RM, Ghosn LJ, Clark N, Capadona LA (2008) Reinforcing polymer cross-linked aerogels with carbon nanofibers. J Mater Chem 18:1843–1852
15.
go back to reference Yuan B, Ding S, Wang D, Wang G, Li H (2012) Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater Lett 75:204–206 Yuan B, Ding S, Wang D, Wang G, Li H (2012) Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater Lett 75:204–206
16.
go back to reference Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626 Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626
17.
go back to reference Li H, Li R, Liu H, Wang D, Zhang P, Liu T, Yang A (2019) Thermal behavior of silica aerogel/PMMA composite reinforced by non-covalent interaction. Emerg Mater Res 8:55–61 Li H, Li R, Liu H, Wang D, Zhang P, Liu T, Yang A (2019) Thermal behavior of silica aerogel/PMMA composite reinforced by non-covalent interaction. Emerg Mater Res 8:55–61
18.
go back to reference Li H, Song L, Fu Y, Wei Y, Li R, Liu H (2017) Loads transfer across static electrical phase interfaces in silica aerogel/polymethyl methacrylate composites. Compos Sci Technol 138:169–178 Li H, Song L, Fu Y, Wei Y, Li R, Liu H (2017) Loads transfer across static electrical phase interfaces in silica aerogel/polymethyl methacrylate composites. Compos Sci Technol 138:169–178
19.
go back to reference Lazzari LK, Perondi D, Zampieri VB, Zattera AJ, Santana RMC (2019) Cellulose/biochar aerogels with excellent mechanical and thermal insulation properties. Cellulose 26:9071–9083 Lazzari LK, Perondi D, Zampieri VB, Zattera AJ, Santana RMC (2019) Cellulose/biochar aerogels with excellent mechanical and thermal insulation properties. Cellulose 26:9071–9083
20.
go back to reference Lamy-Mendes A, Girão AV, Silva RF, Durães L (2019) Polysilsesquioxane-based silica aerogel monoliths with embedded CNTs. Microporous Mesoporous Mater 288:109575 Lamy-Mendes A, Girão AV, Silva RF, Durães L (2019) Polysilsesquioxane-based silica aerogel monoliths with embedded CNTs. Microporous Mesoporous Mater 288:109575
21.
go back to reference Lamy-Mendes A, Silva RF, Durães L (2018) Advances in carbon nanostructure-silica aerogel composites: a review. J Mater Chem A 6:1340–1369 Lamy-Mendes A, Silva RF, Durães L (2018) Advances in carbon nanostructure-silica aerogel composites: a review. J Mater Chem A 6:1340–1369
22.
go back to reference Ślosarczyk A (2017) Synthesis and characterization of silica aerogel-based nanocomposites with carbon fibers and carbon nanotubes in hybrid system. J Sol–Gel Sci Technol 84:16–22 Ślosarczyk A (2017) Synthesis and characterization of silica aerogel-based nanocomposites with carbon fibers and carbon nanotubes in hybrid system. J Sol–Gel Sci Technol 84:16–22
23.
go back to reference Dervin S, Lang Y, Perova T, Hinder SH, Pillai SC (2017) Graphene oxide reinforced high surface area silica aerogels. J Non Cryst Solids 465:31–38 Dervin S, Lang Y, Perova T, Hinder SH, Pillai SC (2017) Graphene oxide reinforced high surface area silica aerogels. J Non Cryst Solids 465:31–38
24.
go back to reference Lei Y, Hu Z, Cao B, Chen X, Song H (2017) Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide. Mater Chem Phys 187:183–190 Lei Y, Hu Z, Cao B, Chen X, Song H (2017) Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide. Mater Chem Phys 187:183–190
25.
go back to reference Li C, Cheng X, Li Z, Pan Y, Huang Y, Gong L (2017) Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J Non Cryst Solids 457:52–59 Li C, Cheng X, Li Z, Pan Y, Huang Y, Gong L (2017) Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J Non Cryst Solids 457:52–59
26.
go back to reference Jiang Y, Feng J, Feng J (2017) Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity. J Sol–Gel Sci Technol 83:64–71 Jiang Y, Feng J, Feng J (2017) Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity. J Sol–Gel Sci Technol 83:64–71
27.
go back to reference Shafi S, Navik R, Ding X, Zhao Y (2019) Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel. J Non Cryst Solids 503–504:78–83 Shafi S, Navik R, Ding X, Zhao Y (2019) Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel. J Non Cryst Solids 503–504:78–83
28.
go back to reference Dou L, Zhang X, Cheng X, Ma Z, Wang X, Si Y, Yu J, Ding B (2019) Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl Mater Interfaces 11:29056–29064 Dou L, Zhang X, Cheng X, Ma Z, Wang X, Si Y, Yu J, Ding B (2019) Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl Mater Interfaces 11:29056–29064
29.
go back to reference Zhao H, Li X, Ji H, Yu H, Yu B, Qi T (2019) Constructing secondary-pore structure by in-situ synthesized mullite whiskers to prepare whiskers aerogels with ultralow thermal conductivity. J Eur Ceram Soc 39:1344–1351 Zhao H, Li X, Ji H, Yu H, Yu B, Qi T (2019) Constructing secondary-pore structure by in-situ synthesized mullite whiskers to prepare whiskers aerogels with ultralow thermal conductivity. J Eur Ceram Soc 39:1344–1351
30.
go back to reference Liu R, Dong X, Xie S, Jia T, Xue Y, Liu J, Jing W, Guo A (2019) Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels. Chem Eng J 360:464–472 Liu R, Dong X, Xie S, Jia T, Xue Y, Liu J, Jing W, Guo A (2019) Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels. Chem Eng J 360:464–472
31.
go back to reference Ilhan FU, Fabrizio EF, McCorkle L, Scheiman DA, Dass A, Palczer A, Meador MB, Johnston JC, Leventis N (2006) Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. J Mater Chem 16:3046–3054 Ilhan FU, Fabrizio EF, McCorkle L, Scheiman DA, Dass A, Palczer A, Meador MB, Johnston JC, Leventis N (2006) Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. J Mater Chem 16:3046–3054
32.
go back to reference Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957 Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957
33.
go back to reference Sethi S, Rathore DK, Ray BC (2015) Effects of temperature and loading speed on interface-dominated strength in fibre/polymer composites: an evaluation for in-situ environment. Mater Des 65:617–626 Sethi S, Rathore DK, Ray BC (2015) Effects of temperature and loading speed on interface-dominated strength in fibre/polymer composites: an evaluation for in-situ environment. Mater Des 65:617–626
34.
go back to reference Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical, and mechanical characterization of isocyanate cross-Linked amine-modified silica aerogels. Chem Mater 18:285–296 Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical, and mechanical characterization of isocyanate cross-Linked amine-modified silica aerogels. Chem Mater 18:285–296
35.
go back to reference Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer crosslinked silica aerogels. Polymer (Guildf) 47:5754–5761 Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer crosslinked silica aerogels. Polymer (Guildf) 47:5754–5761
36.
go back to reference Mittal K (2005) Polyimides and other high temperature polymers: synthesis, characterization and applications Mittal K (2005) Polyimides and other high temperature polymers: synthesis, characterization and applications
37.
go back to reference Boday DJ, Keng PY, Muriithi B, Pyun J, Loy DA (2010) Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations. J Mater Chem 20:6863–6865 Boday DJ, Keng PY, Muriithi B, Pyun J, Loy DA (2010) Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations. J Mater Chem 20:6863–6865
38.
go back to reference Lin D, Yuen PY, Liu Y, Liu W, Liu N, Dauskardt RH, Cui Y (2018) A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater 30:1802661 Lin D, Yuen PY, Liu Y, Liu W, Liu N, Dauskardt RH, Cui Y (2018) A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater 30:1802661
39.
go back to reference Linhares T, Pessoa De Amorim MT, Durães L (2019) Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications. J Mater Chem A 7:22768–22802 Linhares T, Pessoa De Amorim MT, Durães L (2019) Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications. J Mater Chem A 7:22768–22802
41.
go back to reference Jaxel J, Markevicius G, Rigacci A, Budtova T (2017) Thermal superinsulating silica aerogels reinforced with short man-made cellulose fibers. Compos Part A Appl Sci Manuf 103:113–121 Jaxel J, Markevicius G, Rigacci A, Budtova T (2017) Thermal superinsulating silica aerogels reinforced with short man-made cellulose fibers. Compos Part A Appl Sci Manuf 103:113–121
42.
go back to reference Koebel MM, Huber L, Zhao S, Malfait WJ (2016) Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. J Sol–Gel Sci Technol 79:308–318 Koebel MM, Huber L, Zhao S, Malfait WJ (2016) Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. J Sol–Gel Sci Technol 79:308–318
43.
go back to reference Litschauer M, Neouze MA, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18:143–149 Litschauer M, Neouze MA, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18:143–149
44.
go back to reference Liu S, Yu T, Hu N, Liu R, Liu X (2013) High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids Surfaces A Physicochem Eng Asp 439:159–166 Liu S, Yu T, Hu N, Liu R, Liu X (2013) High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids Surfaces A Physicochem Eng Asp 439:159–166
45.
go back to reference Zhang Z, Shen J, Ni X, Wu G, Zhou B, Yang M, Gu X, Qian M, Wu Y (2006) Hydrophobic silica aerogels strengthened with nonwoven fibers. J Macromol Sci Part A Pure Appl Chem. 43:1663–1670 Zhang Z, Shen J, Ni X, Wu G, Zhou B, Yang M, Gu X, Qian M, Wu Y (2006) Hydrophobic silica aerogels strengthened with nonwoven fibers. J Macromol Sci Part A Pure Appl Chem. 43:1663–1670
46.
go back to reference Wu H, Chen Y, Chen Q, Ding Y, Zhou X, Gao H (2013) Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation. J Nanomater 2013:375093 Wu H, Chen Y, Chen Q, Ding Y, Zhou X, Gao H (2013) Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation. J Nanomater 2013:375093
47.
go back to reference Ślosarczyk A, Wojciech S, Piotr Z, Paulina J (2015) Synthesis and characterization of carbon fiber/silica aerogel nanocomposites. J Non Cryst Solids 416:1–3 Ślosarczyk A, Wojciech S, Piotr Z, Paulina J (2015) Synthesis and characterization of carbon fiber/silica aerogel nanocomposites. J Non Cryst Solids 416:1–3
48.
go back to reference Piñero M, Mesa-Díaz MM, de los Santos D, Reyes-Peces MV, Díaz-Fraile JA, de la Rosa-Fox N, Esquivias L, Morales-Florez V (2018) Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation. J Sol–Gel Sci Technol 86:391–399 Piñero M, Mesa-Díaz MM, de los Santos D, Reyes-Peces MV, Díaz-Fraile JA, de la Rosa-Fox N, Esquivias L, Morales-Florez V (2018) Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation. J Sol–Gel Sci Technol 86:391–399
49.
go back to reference Shaikh IR, Bangi UKH, Shaikh PR (2018) MWCNT/silica aerogel: Preparation, characterization and applications in heterogeneous catalysis and decolorization of aqueous dye solutions. Songklanakarin J Sci Technol 40:1181–1185 Shaikh IR, Bangi UKH, Shaikh PR (2018) MWCNT/silica aerogel: Preparation, characterization and applications in heterogeneous catalysis and decolorization of aqueous dye solutions. Songklanakarin J Sci Technol 40:1181–1185
50.
go back to reference Chernov AI, Predein AY, Danilyuk AF, Kuznetsov VL, Larina TV, Obraztsova ED (2016) Optical properties of silica aerogels with embedded multiwalled carbon nanotubes. Phys Status Solidi 253:2440–2445 Chernov AI, Predein AY, Danilyuk AF, Kuznetsov VL, Larina TV, Obraztsova ED (2016) Optical properties of silica aerogels with embedded multiwalled carbon nanotubes. Phys Status Solidi 253:2440–2445
51.
go back to reference Xiang C, Pan Y, Liu X, Shi X, Sun X, Guo J (2006) Electrical properties of multiwalled carbon nanotube reinforced fused silica composites. J Nanosci Nanotechnol 6:3835–3841 Xiang C, Pan Y, Liu X, Shi X, Sun X, Guo J (2006) Electrical properties of multiwalled carbon nanotube reinforced fused silica composites. J Nanosci Nanotechnol 6:3835–3841
52.
go back to reference Xiang C, Pan Y, Liu X, Sun X, Shi X, Guo J (2005) Microwave attenuation of multiwalled carbon nanotube-fused silica composites. Appl Phys Lett 87:1–3 Xiang C, Pan Y, Liu X, Sun X, Shi X, Guo J (2005) Microwave attenuation of multiwalled carbon nanotube-fused silica composites. Appl Phys Lett 87:1–3
53.
go back to reference Gavalas VG, Andrews R, Bhattacharyya D, Bachas LG (2001) Carbon nanotube sol–gel composite materials. Nano Lett 1:719–721 Gavalas VG, Andrews R, Bhattacharyya D, Bachas LG (2001) Carbon nanotube sol–gel composite materials. Nano Lett 1:719–721
54.
go back to reference Loche D, Malfatti L, Carboni D, Alzari V, Mariani A, Casula MF (2016) Incorporation of graphene into silica-based aerogels and application for water remediation. RSC Adv 6:66516–66523 Loche D, Malfatti L, Carboni D, Alzari V, Mariani A, Casula MF (2016) Incorporation of graphene into silica-based aerogels and application for water remediation. RSC Adv 6:66516–66523
56.
go back to reference Hong-li L, Xiang H, Hong-yan L, Jing L, Ya-jing L (2018) Novel GO/silica composite aerogels with enhanced mechanical and thermal insulation properties prepared at ambient pressure. Ferroelectrics 528:15–21 Hong-li L, Xiang H, Hong-yan L, Jing L, Ya-jing L (2018) Novel GO/silica composite aerogels with enhanced mechanical and thermal insulation properties prepared at ambient pressure. Ferroelectrics 528:15–21
57.
go back to reference Buisson P, Pierre AC (2006) Immobilization in quartz fiber felt reinforced silica aerogel improves the activity of Candida rugosa lipase in organic solvents. J Mol Catal B Enzym 39:77–82 Buisson P, Pierre AC (2006) Immobilization in quartz fiber felt reinforced silica aerogel improves the activity of Candida rugosa lipase in organic solvents. J Mol Catal B Enzym 39:77–82
58.
go back to reference Hong C, Zhang X, Han J, Du J, Han W (2009) Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scr Mater 60:563–566 Hong C, Zhang X, Han J, Du J, Han W (2009) Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scr Mater 60:563–566
59.
go back to reference Cao F, Ren L, Li X (2015) Synthesis of high strength monolithic alumina aerogels at ambient pressure. RSC Adv 5:18025–18028 Cao F, Ren L, Li X (2015) Synthesis of high strength monolithic alumina aerogels at ambient pressure. RSC Adv 5:18025–18028
60.
go back to reference Li X, Wang Q, Li H, Ji H, Sun X, He J (2013) Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J Sol–Gel Sci Technol 67:646–653 Li X, Wang Q, Li H, Ji H, Sun X, He J (2013) Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J Sol–Gel Sci Technol 67:646–653
61.
go back to reference Karout A, Buisson P, Perrard A, Pierre AC (2005) Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts. J Sol–Gel Sci Technol 36:163–171 Karout A, Buisson P, Perrard A, Pierre AC (2005) Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts. J Sol–Gel Sci Technol 36:163–171
62.
go back to reference Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non Cryst Solids 186:296–300 Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non Cryst Solids 186:296–300
63.
go back to reference Mi HY, Jing X, Napiwocki BN, Li ZT, Turng LS, Huang HX (2018) Fabrication of fibrous silica sponges by self-assembly electrospinning and their application in tissue engineering for three-dimensional tissue regeneration. Chem Eng J 331:652–662 Mi HY, Jing X, Napiwocki BN, Li ZT, Turng LS, Huang HX (2018) Fabrication of fibrous silica sponges by self-assembly electrospinning and their application in tissue engineering for three-dimensional tissue regeneration. Chem Eng J 331:652–662
64.
go back to reference Patil SP, Shendye P, Markert B (2020) Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: Insights from all-atom simulations. Scr Mater 177:65–68 Patil SP, Shendye P, Markert B (2020) Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: Insights from all-atom simulations. Scr Mater 177:65–68
65.
go back to reference Motahari S, Abolghasemi A (2015) Silica aerogel-glass fiber composites as fire shield for steel frame structures. J Mater Civ Eng 27:04015008 Motahari S, Abolghasemi A (2015) Silica aerogel-glass fiber composites as fire shield for steel frame structures. J Mater Civ Eng 27:04015008
66.
go back to reference Kim CY, Lee JK, Kim BI (2008) Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method. Colloids Surfaces A Physicochem Eng Asp 313–314:179–182 Kim CY, Lee JK, Kim BI (2008) Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method. Colloids Surfaces A Physicochem Eng Asp 313–314:179–182
67.
go back to reference Wu H, Liao Y, Ding Y, Wang H, Peng C, Yin S (2014) Engineering thermal and mechanical properties of multilayer aligned fiber-reinforced aerogel composites. Heat Transf Eng 35:1061–1070 Wu H, Liao Y, Ding Y, Wang H, Peng C, Yin S (2014) Engineering thermal and mechanical properties of multilayer aligned fiber-reinforced aerogel composites. Heat Transf Eng 35:1061–1070
68.
go back to reference Si Y, Wang X, Dou L, Yu J, Ding B (2018) Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv 4:eaas8925 Si Y, Wang X, Dou L, Yu J, Ding B (2018) Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv 4:eaas8925
69.
go back to reference Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic, and optical applications. J Am Ceram Soc 74:2343–2358 Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic, and optical applications. J Am Ceram Soc 74:2343–2358
70.
go back to reference Schneider H, Schreuer J, Hildmann B (2008) Structure and properties of mullite—a review. J Eur Ceram Soc 28:329–344 Schneider H, Schreuer J, Hildmann B (2008) Structure and properties of mullite—a review. J Eur Ceram Soc 28:329–344
71.
go back to reference Yang X, Wei J, Shi D, Sun Y, Lv S, Feng J, Jiang Y (2014) Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel. Mater Sci Eng A 609:125–130 Yang X, Wei J, Shi D, Sun Y, Lv S, Feng J, Jiang Y (2014) Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel. Mater Sci Eng A 609:125–130
72.
go back to reference Gao Q, Junyao Feng C, Zhang WWu, Jiang Y (2009) Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites. Kuei Suan Jen Hsueh Pao J Chin Ceram Soc 37:1–5 Gao Q, Junyao Feng C, Zhang WWu, Jiang Y (2009) Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites. Kuei Suan Jen Hsueh Pao J Chin Ceram Soc 37:1–5
74.
go back to reference Xu L, Jiang Y, Feng J, Feng J, Yue C (2015) Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceram Int 41:437–442 Xu L, Jiang Y, Feng J, Feng J, Yue C (2015) Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceram Int 41:437–442
75.
go back to reference Jones SM (2006) Aerogel: Space exploration applications. J Sol–Gel Sci Technol 40:351–357 Jones SM (2006) Aerogel: Space exploration applications. J Sol–Gel Sci Technol 40:351–357
76.
go back to reference Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265 Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265
77.
go back to reference Bheekhun N, Talib ARA, Hassan MR (2013) Aerogels in aerospace: an overview. Adv Mater Sci Eng 2013:406065 Bheekhun N, Talib ARA, Hassan MR (2013) Aerogels in aerospace: an overview. Adv Mater Sci Eng 2013:406065
78.
go back to reference Wordsworth R, Kerber L, Cockell C (2019) Enabling Martian habitability with silica aerogel via the solid-state greenhouse effect. Nat Astron 3:898–903 Wordsworth R, Kerber L, Cockell C (2019) Enabling Martian habitability with silica aerogel via the solid-state greenhouse effect. Nat Astron 3:898–903
79.
go back to reference Jang KY, Kim K, Upadhye RS (1990) Study of sol–gel processing for fabrication of hollow silica–aerogel spheres. J Vac Sci Technol A Vacuum Surf Film 8:1732–1735 Jang KY, Kim K, Upadhye RS (1990) Study of sol–gel processing for fabrication of hollow silica–aerogel spheres. J Vac Sci Technol A Vacuum Surf Film 8:1732–1735
80.
go back to reference Reynes J, Woignier T, Phalippou J (2001) Permeability measurement in composite aerogels: application to nuclear waste storage. J Non Cryst Solids 285:323–327 Reynes J, Woignier T, Phalippou J (2001) Permeability measurement in composite aerogels: application to nuclear waste storage. J Non Cryst Solids 285:323–327
81.
go back to reference Kawakami N, Fukumoto Y, Kinoshita T, Suzuki K, Inoue KI (2000) Preparation of highly porous silica aerogel thin film by supercritical drying. Jpn J Appl Phys Part 2 Lett 39:L182 Kawakami N, Fukumoto Y, Kinoshita T, Suzuki K, Inoue KI (2000) Preparation of highly porous silica aerogel thin film by supercritical drying. Jpn J Appl Phys Part 2 Lett 39:L182
82.
go back to reference Zhao S, Siqueira G, Drdova S, Norris D, Ubert C, Bonnin A, Galmarini S, Ganobjak M, Pan Z, Brunner S, Nyström G, Wang J, Koebel MM, Malfait WJ (2020) Additive manufacturing of silica aerogels. Nature 584:387–392 Zhao S, Siqueira G, Drdova S, Norris D, Ubert C, Bonnin A, Galmarini S, Ganobjak M, Pan Z, Brunner S, Nyström G, Wang J, Koebel MM, Malfait WJ (2020) Additive manufacturing of silica aerogels. Nature 584:387–392
83.
go back to reference Boday DJ, Muriithi B, Stover RJ, Loy DA (2012) Polyaniline nanofiber-silica composite aerogels. J Non Cryst Solids 358:1575–1580 Boday DJ, Muriithi B, Stover RJ, Loy DA (2012) Polyaniline nanofiber-silica composite aerogels. J Non Cryst Solids 358:1575–1580
84.
go back to reference Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties. sensing oxygen near the speed of open-air diffusion. Chem Mater 11:2837–2845 Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties. sensing oxygen near the speed of open-air diffusion. Chem Mater 11:2837–2845
85.
go back to reference Tsou P (1995) Silica aerogel captures cosmic dust intact. J Non Cryst Solids 186:415–427 Tsou P (1995) Silica aerogel captures cosmic dust intact. J Non Cryst Solids 186:415–427
86.
go back to reference Tabata M, Yano H, Kawai H, Imai E, Kawaguchi Y, Hashimoto H, Yamagishi A (2015) Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment. Orig Life Evol Biosph 45:225–229 Tabata M, Yano H, Kawai H, Imai E, Kawaguchi Y, Hashimoto H, Yamagishi A (2015) Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment. Orig Life Evol Biosph 45:225–229
87.
go back to reference Tang HH, Orndoff ES, Trevino LA (2006) Thermal performance of space suit elements with aerogel insulation for moon and mars exploration. In: International conference on environmental systems. SAE International Tang HH, Orndoff ES, Trevino LA (2006) Thermal performance of space suit elements with aerogel insulation for moon and mars exploration. In: International conference on environmental systems. SAE International
88.
go back to reference Del Corso JA, Bruce WE, Liles KA, Hughes SJ (2009) Thermal analysis and testing of candidate materials for PAIDAE Inflatable aeroshell. In: 20th AIAA aerodynamic decelerator systems technology conference Del Corso JA, Bruce WE, Liles KA, Hughes SJ (2009) Thermal analysis and testing of candidate materials for PAIDAE Inflatable aeroshell. In: 20th AIAA aerodynamic decelerator systems technology conference
89.
go back to reference Jichao W, Jun S, Xingyuan N, Bo W, Xiaodong W, Jia L (2010) Acoustic properties of nanoporous silica aerogel. Rare Met Mater Eng 39:14–17 Jichao W, Jun S, Xingyuan N, Bo W, Xiaodong W, Jia L (2010) Acoustic properties of nanoporous silica aerogel. Rare Met Mater Eng 39:14–17
90.
go back to reference Conroy JFT, Hosticka B, Davis SC, Smith AN, Norris PM (1999) Microscale thermal relaxation during acoustic propagation in aerogel and other porous media. Microscale Thermophys Eng 3:199–215 Conroy JFT, Hosticka B, Davis SC, Smith AN, Norris PM (1999) Microscale thermal relaxation during acoustic propagation in aerogel and other porous media. Microscale Thermophys Eng 3:199–215
91.
go back to reference Martin J, Hosticka B, Lattimer C, Norris PM (2001) Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels. J Non Cryst Solids 285:222–229 Martin J, Hosticka B, Lattimer C, Norris PM (2001) Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels. J Non Cryst Solids 285:222–229
92.
go back to reference Levy D, Zayat M (2015) The Sol–Gel handbook. Synthesis, characterization and applications Levy D, Zayat M (2015) The Sol–Gel handbook. Synthesis, characterization and applications
93.
go back to reference Feng J, Le D, Nguyen ST, Tan Chin Nien V, Jewell D, Duong HM (2016) Silica–cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surfaces A Physicochem Eng Asp 506:298–305 Feng J, Le D, Nguyen ST, Tan Chin Nien V, Jewell D, Duong HM (2016) Silica–cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surfaces A Physicochem Eng Asp 506:298–305
94.
go back to reference Hrubesh LW, Keene LE, Latorre VR (1993) Dielectric properties of aerogels. J Mater Res 8:1736–1741 Hrubesh LW, Keene LE, Latorre VR (1993) Dielectric properties of aerogels. J Mater Res 8:1736–1741
95.
go back to reference Li Y, Liu Q, Hess AJ, Mi S, Liu X, Chen Z, Xie Y, Smalyukh II (2019) Programmable ultralight magnets via orientational arrangement of ferromagnetic nanoparticles within aerogel hosts. ACS Nano 13:13875–13883 Li Y, Liu Q, Hess AJ, Mi S, Liu X, Chen Z, Xie Y, Smalyukh II (2019) Programmable ultralight magnets via orientational arrangement of ferromagnetic nanoparticles within aerogel hosts. ACS Nano 13:13875–13883
96.
go back to reference Tikhomirov BA (2018) Sorption of atmospheric gases (N2, O2, Ar, CO2, and H2O) by silica aerogel. Atmos Ocean Opt 31:232–237 Tikhomirov BA (2018) Sorption of atmospheric gases (N2, O2, Ar, CO2, and H2O) by silica aerogel. Atmos Ocean Opt 31:232–237
97.
go back to reference Shi M, Tang C, Yang X, Zhou J, Jia F, Han Y, Li Z (2017) Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures. RSC Adv 7:4039–4045 Shi M, Tang C, Yang X, Zhou J, Jia F, Han Y, Li Z (2017) Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures. RSC Adv 7:4039–4045
98.
go back to reference Mohammadian M, Jafarzadeh Kashi TS, Erfan M, Soorbaghi FP (2018) Synthesis and characterization of silica aerogel as a promising drug carrier system. J Drug Deliv Sci Technol 44:205–212 Mohammadian M, Jafarzadeh Kashi TS, Erfan M, Soorbaghi FP (2018) Synthesis and characterization of silica aerogel as a promising drug carrier system. J Drug Deliv Sci Technol 44:205–212
99.
go back to reference Smirnova I, Mamic J, Arlt W (2003) Adsorption of drugs on silica aerogels. Langmuir 19:8521–8525 Smirnova I, Mamic J, Arlt W (2003) Adsorption of drugs on silica aerogels. Langmuir 19:8521–8525
100.
go back to reference Mohseni-Bandpei A, Eslami A, Kazemian H, Zarrabi M, Al-Musawi TJ (2020) A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: Characterization and optimization of the adsorption data using response surface methodology. Environ Technol Innov 18:100642 Mohseni-Bandpei A, Eslami A, Kazemian H, Zarrabi M, Al-Musawi TJ (2020) A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: Characterization and optimization of the adsorption data using response surface methodology. Environ Technol Innov 18:100642
101.
go back to reference Feng G, Li Z, Mi L, Zheng J, Feng X, Chen W (2018) Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sources 376:177–183 Feng G, Li Z, Mi L, Zheng J, Feng X, Chen W (2018) Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sources 376:177–183
102.
go back to reference Pakowski Z, Maciszewska K (2004) Permeability of nonwoven glass fiber filters with hydrophobic silica aerogel layer. Inz Chem I Process 25:1435–1441 Pakowski Z, Maciszewska K (2004) Permeability of nonwoven glass fiber filters with hydrophobic silica aerogel layer. Inz Chem I Process 25:1435–1441
103.
go back to reference Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4:375–382 Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4:375–382
104.
go back to reference Li YF, Feng J, Sun HB (2019) Perovskite quantum dots for light-emitting devices. Nanoscale 11:19119–19139 Li YF, Feng J, Sun HB (2019) Perovskite quantum dots for light-emitting devices. Nanoscale 11:19119–19139
105.
go back to reference Cai X, Luo Y, Liu B, Cheng HM (2018) Preparation of 2D material dispersions and their applications. Chem Soc Rev 47:6224–6266 Cai X, Luo Y, Liu B, Cheng HM (2018) Preparation of 2D material dispersions and their applications. Chem Soc Rev 47:6224–6266
Metadata
Title
A review of recent progress on the silica aerogel monoliths: synthesis, reinforcement, and applications
Authors
Jiming Lin
Guangze Li
Wei Liu
Ruoxiang Qiu
Huanyi Wei
Kai Zong
Xingke Cai
Publication date
19-03-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05997-w

Other articles of this Issue 18/2021

Journal of Materials Science 18/2021 Go to the issue

Premium Partners