Skip to main content
Top
Published in: Acta Mechanica Sinica 3/2015

01-06-2015 | Review Paper

A review of research on nanoparticulate flow undergoing coagulation

Authors: Jianzhong Lin, Linlin Huo

Published in: Acta Mechanica Sinica | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoparticulate flows occur in a wide range of natural phenomena and engineering applications and, hence, have attracted much attention. The purpose of the present paper is to provide a review of the research conducted over the last decade. The research covered relates to the Brownian coagulation of monodisperse and polydisperse particles, the Taylor-series expansion method of moment, and nanoparticle distributions due to coagulation in pipe and channel flow, jet flow, and the mixing layer and in the process of flame synthesis and deposition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Uchowski, V.: Versuch einer mathematischen theorie der koagulation skinetik kollider losungen. Z. Phys. Chem. 92, 129–168 (1917) Uchowski, V.: Versuch einer mathematischen theorie der koagulation skinetik kollider losungen. Z. Phys. Chem. 92, 129–168 (1917)
2.
go back to reference Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)CrossRef Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)CrossRef
3.
go back to reference Han, M.Y., Lee, H., Lawler, D.F., Choi, S.: Collision efficiency factor in Brownian coagulation (\(\alpha \)Br) including hydrodynamics and interparticle forces. Water Sci. Technol. 36, 69–75 (1997)CrossRef Han, M.Y., Lee, H., Lawler, D.F., Choi, S.: Collision efficiency factor in Brownian coagulation (\(\alpha \)Br) including hydrodynamics and interparticle forces. Water Sci. Technol. 36, 69–75 (1997)CrossRef
4.
go back to reference Han, M.Y., Lee, H.: Collision efficiency factor in Brownian coagulation(\(\alpha \)Br): calculation and experimental verification. Colloids Surf. A 202, 23–31 (2002)CrossRef Han, M.Y., Lee, H.: Collision efficiency factor in Brownian coagulation(\(\alpha \)Br): calculation and experimental verification. Colloids Surf. A 202, 23–31 (2002)CrossRef
5.
go back to reference Vanni, M., Baldi, G.: Coagulation efficiency of colloidal particles in shear flow. Adv. Colloid Interface Sci. 97, 151–177 (2002)CrossRef Vanni, M., Baldi, G.: Coagulation efficiency of colloidal particles in shear flow. Adv. Colloid Interface Sci. 97, 151–177 (2002)CrossRef
6.
go back to reference Chin, C.J., Lu, S.C., Yiacoumi, S.: Fractal dimension of particle aggregates in magnetic fields. Sep. Sci. Technol. 39, 2839–2862 (2004)CrossRef Chin, C.J., Lu, S.C., Yiacoumi, S.: Fractal dimension of particle aggregates in magnetic fields. Sep. Sci. Technol. 39, 2839–2862 (2004)CrossRef
7.
go back to reference Olsen, A., Franks, G., Biggs, S.: An improved collision efficiency model for particle aggregation. J. Chem. Phys. 125, 184906 (2006)CrossRef Olsen, A., Franks, G., Biggs, S.: An improved collision efficiency model for particle aggregation. J. Chem. Phys. 125, 184906 (2006)CrossRef
8.
go back to reference Chun, J., Koch, D.L.: The effects of non-continuum hydrodynamics on the Brownian coagulation of aerosol particles. J. Aerosol Sci. 37, 471–482 (2006)CrossRef Chun, J., Koch, D.L.: The effects of non-continuum hydrodynamics on the Brownian coagulation of aerosol particles. J. Aerosol Sci. 37, 471–482 (2006)CrossRef
9.
go back to reference Feng, Y., Lin, J.Z.: The collision efficiency of spherical dioctyl phthalate aerosol particles in the Brownian coagulation. Chin. Phys. B 17, 4547–4553 (2008)CrossRef Feng, Y., Lin, J.Z.: The collision efficiency of spherical dioctyl phthalate aerosol particles in the Brownian coagulation. Chin. Phys. B 17, 4547–4553 (2008)CrossRef
10.
go back to reference Wang, Y.M., Lin, J.Z., Feng, Y.: The central oblique collision efficiency of spherical nanoparticles in the Brownian coagulation. Mod. Phys. Lett. B 24, 1523–1531 (2010)MATHCrossRef Wang, Y.M., Lin, J.Z., Feng, Y.: The central oblique collision efficiency of spherical nanoparticles in the Brownian coagulation. Mod. Phys. Lett. B 24, 1523–1531 (2010)MATHCrossRef
11.
go back to reference Chen, Z.L., You, Z.J.: New expression for collision efficiency of spherical nanoparticles in Brownian coagulation. Appl. Math. Mech (English Edition). 31, 851–860 (2010)MATHMathSciNetCrossRef Chen, Z.L., You, Z.J.: New expression for collision efficiency of spherical nanoparticles in Brownian coagulation. Appl. Math. Mech (English Edition). 31, 851–860 (2010)MATHMathSciNetCrossRef
12.
go back to reference Wang, Y.M., Lin, J.Z.: Attachment efficiency of polydisperse nanoparticles wall-deposition. KONA Powder Part. J. 29, 158–167 (2011)CrossRef Wang, Y.M., Lin, J.Z.: Attachment efficiency of polydisperse nanoparticles wall-deposition. KONA Powder Part. J. 29, 158–167 (2011)CrossRef
13.
go back to reference Zhang, Y.Y., Li, S.Q., Yan, W., Yao, Q., Tse, S.D.: Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime. J. Chem. Phys. 134, 084501 (2011)CrossRef Zhang, Y.Y., Li, S.Q., Yan, W., Yao, Q., Tse, S.D.: Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime. J. Chem. Phys. 134, 084501 (2011)CrossRef
14.
go back to reference Wang, Y.M., Lin, J.Z.: The oblique collision efficiency of nanoparticles at different angles in Brownian coagulation. Comput. Math. Appl. 61, 1917–1922 (2011)MATHMathSciNetCrossRef Wang, Y.M., Lin, J.Z.: The oblique collision efficiency of nanoparticles at different angles in Brownian coagulation. Comput. Math. Appl. 61, 1917–1922 (2011)MATHMathSciNetCrossRef
15.
go back to reference Chen, Z.L., Jiang, R.J., Ku, X.K.: Collision efficiency of brownian coagulation for nanoparticles taking into account the slip boundary condition on the particle surface. Mod. Phys. Lett. B 26, 1250135 (2012)CrossRef Chen, Z.L., Jiang, R.J., Ku, X.K.: Collision efficiency of brownian coagulation for nanoparticles taking into account the slip boundary condition on the particle surface. Mod. Phys. Lett. B 26, 1250135 (2012)CrossRef
16.
go back to reference Hawa, T., Zachariah, M.R.: Coalescence kinetics of unequal sized nanoparticles. J. Aerosol Sci. 37, 1–15 (2006)CrossRef Hawa, T., Zachariah, M.R.: Coalescence kinetics of unequal sized nanoparticles. J. Aerosol Sci. 37, 1–15 (2006)CrossRef
17.
go back to reference Wang, Y.M., Lin, J.Z.: Collision efficiency of two nanoparticles with different diameters in Brownian coagulation. Appl. Math. Mech. (English Edition). 32, 1019–1028 (2011)MATHCrossRef Wang, Y.M., Lin, J.Z.: Collision efficiency of two nanoparticles with different diameters in Brownian coagulation. Appl. Math. Mech. (English Edition). 32, 1019–1028 (2011)MATHCrossRef
18.
go back to reference Kelkar, A.V., Dong, J.N., Franses, E.I., Corti, D.S.: New models and predictions for Brownian coagulation of non-interacting spheres. J. Colliod Interface Sci. 389, 188–198 (2013)CrossRef Kelkar, A.V., Dong, J.N., Franses, E.I., Corti, D.S.: New models and predictions for Brownian coagulation of non-interacting spheres. J. Colliod Interface Sci. 389, 188–198 (2013)CrossRef
19.
go back to reference Muller, H.: Zur Allgemeinen Theorie der Raschen Koagulation. Kolloideihefte 27, 223–250 (1928) (in German) Muller, H.: Zur Allgemeinen Theorie der Raschen Koagulation. Kolloideihefte 27, 223–250 (1928) (in German)
20.
go back to reference Friedlander, S.K.: Smoke, Dust and Haze: Fundamentals of Aerosol Behavior. Wiley, New York (2000) Friedlander, S.K.: Smoke, Dust and Haze: Fundamentals of Aerosol Behavior. Wiley, New York (2000)
21.
go back to reference Allen, M.D., Raabe, O.G.: Slip correction measurement of spherical solid aerosol particles in an improved millican apparatus. Aerosol Sci. Technol. 4, 269–286 (1985)CrossRef Allen, M.D., Raabe, O.G.: Slip correction measurement of spherical solid aerosol particles in an improved millican apparatus. Aerosol Sci. Technol. 4, 269–286 (1985)CrossRef
22.
go back to reference Fuchs, N.A.: The Mechanics of Aerosols. Pergamon, New York (1964) Fuchs, N.A.: The Mechanics of Aerosols. Pergamon, New York (1964)
23.
go back to reference Otto, E., Fissan, H., Park, S.H., Lee, K.W.: The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range: part II-analytical solution using Dahneke’s coagulation kernel. J. Aerosol Sci. 30, 17–34 (1999)CrossRef Otto, E., Fissan, H., Park, S.H., Lee, K.W.: The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range: part II-analytical solution using Dahneke’s coagulation kernel. J. Aerosol Sci. 30, 17–34 (1999)CrossRef
24.
go back to reference Pratsinis, S.E.: Simultaneous nucleation, condensation, and coagulation in aerosol reactor. J. Colloid Interface Sci. 124, 416–417 (1988)CrossRef Pratsinis, S.E.: Simultaneous nucleation, condensation, and coagulation in aerosol reactor. J. Colloid Interface Sci. 124, 416–417 (1988)CrossRef
25.
go back to reference Hulbert, H.M., Katz, S.: Some problems in particle technology: a statistical mechanical formulation. Chem. Eng. Sci. 19, 555–574 (1994)CrossRef Hulbert, H.M., Katz, S.: Some problems in particle technology: a statistical mechanical formulation. Chem. Eng. Sci. 19, 555–574 (1994)CrossRef
26.
go back to reference Lin, J.Z., Chan, T.L., Liu, S., Zhou, K., Zhou, Y., Lee, S.C.: Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet. Int. J. Nonlinear Sci. Numer. Simul. 8, 45–54 (2007)CrossRef Lin, J.Z., Chan, T.L., Liu, S., Zhou, K., Zhou, Y., Lee, S.C.: Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet. Int. J. Nonlinear Sci. Numer. Simul. 8, 45–54 (2007)CrossRef
27.
go back to reference Upadhyay, R.R., Ezekoye, O.A.: Evaluation of the 1-point quadrature approximation in QMOM for combined aerosol growth laws. J. Aerosol Sci. 34, 1665–1683 (2003)CrossRef Upadhyay, R.R., Ezekoye, O.A.: Evaluation of the 1-point quadrature approximation in QMOM for combined aerosol growth laws. J. Aerosol Sci. 34, 1665–1683 (2003)CrossRef
28.
go back to reference Pratsinis, S.E.: Receptor models for ambient carbonaceous aerosols. Aerosol Sci. Technol. 10, 258–266 (1989)CrossRef Pratsinis, S.E.: Receptor models for ambient carbonaceous aerosols. Aerosol Sci. Technol. 10, 258–266 (1989)CrossRef
29.
go back to reference Mcgraw, R.: Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27, 255–265 (1997)CrossRef Mcgraw, R.: Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27, 255–265 (1997)CrossRef
30.
go back to reference Yu, M.Z., Lin, J.Z., Chan, T.L.: A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Sci. Technol. 42, 705–713 (2008)CrossRef Yu, M.Z., Lin, J.Z., Chan, T.L.: A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Sci. Technol. 42, 705–713 (2008)CrossRef
31.
go back to reference Lee, K.W., Chen, H.: Coagulation rate of polydisperse particles. Aerosol Sci. Technol. 3, 327–334 (1984)CrossRef Lee, K.W., Chen, H.: Coagulation rate of polydisperse particles. Aerosol Sci. Technol. 3, 327–334 (1984)CrossRef
32.
go back to reference Yu, M.Z., Lin, J.Z.: Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model. Int. J. Heat Mass Transfer 53, 635–644 (2010)MATHCrossRef Yu, M.Z., Lin, J.Z.: Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model. Int. J. Heat Mass Transfer 53, 635–644 (2010)MATHCrossRef
33.
go back to reference Wang, W.X., He, Q., Chen, N.A., Xie, M.L.: A simple moment model to study the effect of diffusion on the coagulation of nanoparticles due to Brownian motion in the free molecule regime. Therm. Sci. 16, 1331–1338 (2012)CrossRef Wang, W.X., He, Q., Chen, N.A., Xie, M.L.: A simple moment model to study the effect of diffusion on the coagulation of nanoparticles due to Brownian motion in the free molecule regime. Therm. Sci. 16, 1331–1338 (2012)CrossRef
34.
go back to reference Lin, J.Z., Chen, Z.L.: A modified TEMOM model for Brownian coagulation of nanoparticles based on the asymptotic solution of the sectional method. Sci. China Technol. Sci. 56, 3081–3092 (2013)CrossRef Lin, J.Z., Chen, Z.L.: A modified TEMOM model for Brownian coagulation of nanoparticles based on the asymptotic solution of the sectional method. Sci. China Technol. Sci. 56, 3081–3092 (2013)CrossRef
35.
go back to reference Xie, M.L., He, Q.: The fundamental aspects of TEMOM model for particle coagulation due to Brownian motion. Part 1: in the free molecule regimes. Int. J. Heat Mass Transfer 70, 1115–1120 (2014)CrossRef Xie, M.L., He, Q.: The fundamental aspects of TEMOM model for particle coagulation due to Brownian motion. Part 1: in the free molecule regimes. Int. J. Heat Mass Transfer 70, 1115–1120 (2014)CrossRef
36.
go back to reference Chen, Z.L., Lin, J.Z., Yu, M.Z.: Direct expansion method of moments for nanoparticle Brownian coagulation in the entire size regime. J. Aerosol Sci. 67, 28–37 (2014)CrossRef Chen, Z.L., Lin, J.Z., Yu, M.Z.: Direct expansion method of moments for nanoparticle Brownian coagulation in the entire size regime. J. Aerosol Sci. 67, 28–37 (2014)CrossRef
37.
go back to reference De Bleecker, K., Bogaerts, A., Goedheer, W.: Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges. New J. Phys. 8, 178–181 (2006)CrossRef De Bleecker, K., Bogaerts, A., Goedheer, W.: Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges. New J. Phys. 8, 178–181 (2006)CrossRef
38.
go back to reference Yin, Z.Q., Lou, M.: Experimental study on nanoparticle deposition in straight pipe flow. Therm. Sci. 16, 1410–1413 (2012)CrossRef Yin, Z.Q., Lou, M.: Experimental study on nanoparticle deposition in straight pipe flow. Therm. Sci. 16, 1410–1413 (2012)CrossRef
39.
go back to reference Lin, J.Z., Liu, S., Chan, T.L.: Nanoparticle migration in a fully developed turbulent pipe flow considering the particle coagulation. Chin. J. Chem. Eng. 20, 679–685 (2012)CrossRef Lin, J.Z., Liu, S., Chan, T.L.: Nanoparticle migration in a fully developed turbulent pipe flow considering the particle coagulation. Chin. J. Chem. Eng. 20, 679–685 (2012)CrossRef
40.
go back to reference Lin, J.Z., Yin, Z.Q., Gan, F.J., Yu, M.Z.: Penetration efficiency and distribution of aerosol particles in turbulent pipe flow undergoing coagulation and breakage. Int. J. Multiph. Flow 61, 28–36 (2014)MathSciNetCrossRef Lin, J.Z., Yin, Z.Q., Gan, F.J., Yu, M.Z.: Penetration efficiency and distribution of aerosol particles in turbulent pipe flow undergoing coagulation and breakage. Int. J. Multiph. Flow 61, 28–36 (2014)MathSciNetCrossRef
41.
go back to reference Lin, P.F., Lin, J.Z.: Transport and deposition of nanoparticles in bend tube with circular cross-section. Prog. Nat. Sci. 19, 33–39 (2009)CrossRef Lin, P.F., Lin, J.Z.: Transport and deposition of nanoparticles in bend tube with circular cross-section. Prog. Nat. Sci. 19, 33–39 (2009)CrossRef
42.
go back to reference Lin, P.F., Lin, J.Z.: Prediction of nanoparticle transport and deposition in bends. Appl. Math. Mech. (English Edition). 30, 957–968 (2009)MATHCrossRef Lin, P.F., Lin, J.Z.: Prediction of nanoparticle transport and deposition in bends. Appl. Math. Mech. (English Edition). 30, 957–968 (2009)MATHCrossRef
43.
go back to reference Lin, J.Z., Lin, P.F., Yu, M.Z., Chen, H.J.: Nanoparticle transport and coagulation in bends of circular cross section via a new moment method. Chin. J. Chem. Eng. 18, 1–9 (2010)CrossRef Lin, J.Z., Lin, P.F., Yu, M.Z., Chen, H.J.: Nanoparticle transport and coagulation in bends of circular cross section via a new moment method. Chin. J. Chem. Eng. 18, 1–9 (2010)CrossRef
44.
go back to reference Lin, J.Z., Lin, P.F., Chen, H.J.: Research on the transport and deposition of nanoparticles in a rotating curved pipe. Phys. Fluids 21, 122001 (2009)CrossRef Lin, J.Z., Lin, P.F., Chen, H.J.: Research on the transport and deposition of nanoparticles in a rotating curved pipe. Phys. Fluids 21, 122001 (2009)CrossRef
45.
go back to reference Lin, J.Z., Lin, P.F., Chen, H.J.: Nanoparticle distribution in a rotating curved pipe considering coagulation and dispersion. Sci. China Phys. Mech. Astron. 54, 1502–1513 (2011)CrossRef Lin, J.Z., Lin, P.F., Chen, H.J.: Nanoparticle distribution in a rotating curved pipe considering coagulation and dispersion. Sci. China Phys. Mech. Astron. 54, 1502–1513 (2011)CrossRef
46.
go back to reference Chan, T.L., Lin, J.Z., Zhou, K., Chan, C.K.: Simultaneous numerical simulation of nano and fine particle coagulation and dispersion in a round jet. J. Aerosol Sci. 37, 1545–1561 (2006)CrossRef Chan, T.L., Lin, J.Z., Zhou, K., Chan, C.K.: Simultaneous numerical simulation of nano and fine particle coagulation and dispersion in a round jet. J. Aerosol Sci. 37, 1545–1561 (2006)CrossRef
47.
go back to reference Lin, J.Z., Chan, T.L., Liu, S., Zhou, Y., Lee, S.C.: Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet. Int. J. Nonlinear Sci. Numer. Simul. 8, 45–54 (2007)CrossRef Lin, J.Z., Chan, T.L., Liu, S., Zhou, Y., Lee, S.C.: Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet. Int. J. Nonlinear Sci. Numer. Simul. 8, 45–54 (2007)CrossRef
48.
go back to reference Yin, Z.Q., Lin, J.Z., Zhou, K., Chan, T.L.: Numerical simulation of the formation of pollutant nanoparticles in the exhaust twin-jet plume of a moving car. Int. J. Nonlinear Sci. Numer. Simul. 8, 535–543 (2007)CrossRef Yin, Z.Q., Lin, J.Z., Zhou, K., Chan, T.L.: Numerical simulation of the formation of pollutant nanoparticles in the exhaust twin-jet plume of a moving car. Int. J. Nonlinear Sci. Numer. Simul. 8, 535–543 (2007)CrossRef
49.
go back to reference Yin, Z.Q., Lin, J.Z.: Numerical simulation of the formation of nanoparticles in an impinging twin-jet. J. Hydrodyn. 19, 533–541 (2007)CrossRef Yin, Z.Q., Lin, J.Z.: Numerical simulation of the formation of nanoparticles in an impinging twin-jet. J. Hydrodyn. 19, 533–541 (2007)CrossRef
50.
go back to reference Fujitani, Y., Hirano, S., Kobayashi, S., Tanabe, K., Suzuki, A., Furuyama, A., Kobayashi, T.: Characterization of dilution conditions for diesel nanoparticle inhalation studies. Inhalation Toxicol. 21, 200–209 (2009)CrossRef Fujitani, Y., Hirano, S., Kobayashi, S., Tanabe, K., Suzuki, A., Furuyama, A., Kobayashi, T.: Characterization of dilution conditions for diesel nanoparticle inhalation studies. Inhalation Toxicol. 21, 200–209 (2009)CrossRef
51.
go back to reference Chan, T.L., Zhou, K., Lin, J.Z., Liu, C.H.: Vehicular exhaust gas-to-nanoparticle conversion and concentration distribution in the vehicle wake region. Int. J. Nonlinear Sci. Numer. Simul. 11, 581–593 (2010)CrossRef Chan, T.L., Zhou, K., Lin, J.Z., Liu, C.H.: Vehicular exhaust gas-to-nanoparticle conversion and concentration distribution in the vehicle wake region. Int. J. Nonlinear Sci. Numer. Simul. 11, 581–593 (2010)CrossRef
52.
go back to reference Zhu, J.Z., Qi, H.Y., Wang, J.S.: Nanoparticle dispersion and coagulation in a turbulent round jet. Int. J. Multiph. Flow 54, 22–30 (2013)CrossRef Zhu, J.Z., Qi, H.Y., Wang, J.S.: Nanoparticle dispersion and coagulation in a turbulent round jet. Int. J. Multiph. Flow 54, 22–30 (2013)CrossRef
53.
go back to reference Yu, M.Z., Lin, J.Z., Chen, L.H., Chan, T.L.: Large eddy simulation of a planar jet flow with nanoparticle coagulation. Acta Mech. Sin. 22, 293–300 (2006)MATHCrossRef Yu, M.Z., Lin, J.Z., Chen, L.H., Chan, T.L.: Large eddy simulation of a planar jet flow with nanoparticle coagulation. Acta Mech. Sin. 22, 293–300 (2006)MATHCrossRef
54.
go back to reference Yu, M.Z., Lin, J.Z., Chen, L.H.: Nanoparticle coagulation in a planar jet via moment method. Appl. Math. Mech. (English Edition). 28, 1445–1453 (2007)MATHCrossRef Yu, M.Z., Lin, J.Z., Chen, L.H.: Nanoparticle coagulation in a planar jet via moment method. Appl. Math. Mech. (English Edition). 28, 1445–1453 (2007)MATHCrossRef
55.
go back to reference Lu, Y.H.: Nanoparticle nucleation and coagulation in a submerged jet: theoretical prediction and simulation. Int. J. Nonlinear Sci. Numer. Simul. 10, 1189–1200 (2009)CrossRef Lu, Y.H.: Nanoparticle nucleation and coagulation in a submerged jet: theoretical prediction and simulation. Int. J. Nonlinear Sci. Numer. Simul. 10, 1189–1200 (2009)CrossRef
56.
go back to reference Das, S., Garrick, S.C.: The effects of turbulence on nanoparticle growth in turbulent reacting jets. Phys. Fluids 22, 103303 (2010)CrossRef Das, S., Garrick, S.C.: The effects of turbulence on nanoparticle growth in turbulent reacting jets. Phys. Fluids 22, 103303 (2010)CrossRef
57.
go back to reference Loeffler, J., Das, S., Garrick, S.C.: Large eddy simulation of titanium dioxide nanoparticle formation and growth in turbulent jets. Aerosol Sci. Technol. 45, 616–628 (2011)CrossRef Loeffler, J., Das, S., Garrick, S.C.: Large eddy simulation of titanium dioxide nanoparticle formation and growth in turbulent jets. Aerosol Sci. Technol. 45, 616–628 (2011)CrossRef
58.
go back to reference Garrick, S.C., Wang, G.H.: Modeling and simulation of titanium dioxide nanoparticle synthesis with finite-rate sintering in planar jets. J. Nanopart. Res. 13, 973–984 (2011)CrossRef Garrick, S.C., Wang, G.H.: Modeling and simulation of titanium dioxide nanoparticle synthesis with finite-rate sintering in planar jets. J. Nanopart. Res. 13, 973–984 (2011)CrossRef
59.
go back to reference Settumba, N., Garrick, S.C.: Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. J. Aerosol Sci. 34, 149–167 (2003)CrossRef Settumba, N., Garrick, S.C.: Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. J. Aerosol Sci. 34, 149–167 (2003)CrossRef
60.
go back to reference Settumba, N., Garrick, S.C.: A comparison of diffusive transport in a moment method for nanoparticle coagulation. J. Aerosol Sci. 35, 93–101 (2004)CrossRef Settumba, N., Garrick, S.C.: A comparison of diffusive transport in a moment method for nanoparticle coagulation. J. Aerosol Sci. 35, 93–101 (2004)CrossRef
61.
go back to reference Garrick, S.C., Lehtinen, K.E.J., Zachariah, M.R.: Nanoparticle coagulation via a Navier–Stokes/nodal methodology: evolution of the particle field. J. Aerosol Sci. 37, 555–576 (2006)CrossRef Garrick, S.C., Lehtinen, K.E.J., Zachariah, M.R.: Nanoparticle coagulation via a Navier–Stokes/nodal methodology: evolution of the particle field. J. Aerosol Sci. 37, 555–576 (2006)CrossRef
62.
go back to reference Wang, G.H., Garrick, S.C.: Modeling and simulation of titania formation and growth in temporal mixing layers. J. Aerosol Sci. 37, 431–451 (2006)CrossRef Wang, G.H., Garrick, S.C.: Modeling and simulation of titania formation and growth in temporal mixing layers. J. Aerosol Sci. 37, 431–451 (2006)CrossRef
64.
go back to reference Xie, M.L., Yu, M.Z., Wang, L.P.: A TEMOM model to simulate nanoparticle growth in the temporal mixing layer due to Brownian coagulation. J. Aerosol Sci. 54, 32–48 (2012)CrossRef Xie, M.L., Yu, M.Z., Wang, L.P.: A TEMOM model to simulate nanoparticle growth in the temporal mixing layer due to Brownian coagulation. J. Aerosol Sci. 54, 32–48 (2012)CrossRef
65.
go back to reference Rosner, D.E., Pyykonen, J.J.: Bivariate moment simulation of coagulating and sintering nanoparticles in flames. AIChE J. 48, 476–491 (2002)CrossRef Rosner, D.E., Pyykonen, J.J.: Bivariate moment simulation of coagulating and sintering nanoparticles in flames. AIChE J. 48, 476–491 (2002)CrossRef
66.
go back to reference Kim, H.J., Jeong, J.I., Park, Y.: Modeling of generation and growth of non-spherical nanoparticles in a co-flow flame. J. Nanopart. Res. 5, 237–246 (2003)CrossRef Kim, H.J., Jeong, J.I., Park, Y.: Modeling of generation and growth of non-spherical nanoparticles in a co-flow flame. J. Nanopart. Res. 5, 237–246 (2003)CrossRef
67.
go back to reference Tsantilis, S., Pratsinis, S.E.: Narrowing the size distribution of aerosol-made titania by surface growth and coagulation. J. Aerosol Sci. 35, 405–420 (2004)CrossRef Tsantilis, S., Pratsinis, S.E.: Narrowing the size distribution of aerosol-made titania by surface growth and coagulation. J. Aerosol Sci. 35, 405–420 (2004)CrossRef
68.
go back to reference Kostoglou, M., Konstandopoulos, A.G., Friedlander, S.K.: Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring. J. Aerosol Sci. 37, 1102–1115 (2006)CrossRef Kostoglou, M., Konstandopoulos, A.G., Friedlander, S.K.: Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring. J. Aerosol Sci. 37, 1102–1115 (2006)CrossRef
69.
go back to reference Morgan, N.M., Wells, C.G., Goodson, M.J., Kraft, M., Wagner, W.: A new numerical approach for the simulation of the growth of inorganic nanoparticles. J. Comput. Phys. 211, 638–658 (2006)MATHMathSciNetCrossRef Morgan, N.M., Wells, C.G., Goodson, M.J., Kraft, M., Wagner, W.: A new numerical approach for the simulation of the growth of inorganic nanoparticles. J. Comput. Phys. 211, 638–658 (2006)MATHMathSciNetCrossRef
70.
go back to reference Morgan, N., Kraft, M., Balthasar, M., Wong, D., Frenklach, M., Mitchell, P.: Numerical simulations of soot aggregation in premixed laminar flames. Proc. Combust. Inst. 31, 693–700 (2007)CrossRef Morgan, N., Kraft, M., Balthasar, M., Wong, D., Frenklach, M., Mitchell, P.: Numerical simulations of soot aggregation in premixed laminar flames. Proc. Combust. Inst. 31, 693–700 (2007)CrossRef
71.
go back to reference Starchenko, V., Muller, M., Lebovka, N.: Growth of polyelectrolyte complex nanoparticles: computer simulations and experiments. J. Phys. Chem. C 112, 8863–8869 (2008)CrossRef Starchenko, V., Muller, M., Lebovka, N.: Growth of polyelectrolyte complex nanoparticles: computer simulations and experiments. J. Phys. Chem. C 112, 8863–8869 (2008)CrossRef
72.
go back to reference Yu, M.Z., Lin, J.Z., Chen, L.H., Chan, T.L.: Effect of precursor loading on non-spherical \(\text{ TiO }_{2}\) nanoparticle synthesis in a diffusion flame reactor. Chem. Eng. Sci. 63, 2317–2329 (2008)CrossRef Yu, M.Z., Lin, J.Z., Chen, L.H., Chan, T.L.: Effect of precursor loading on non-spherical \(\text{ TiO }_{2}\) nanoparticle synthesis in a diffusion flame reactor. Chem. Eng. Sci. 63, 2317–2329 (2008)CrossRef
73.
go back to reference Yu, M.Z., Lin, J.Z., Chan, T.L.: Numerical simulation of nanoparticle synthesis in diffusion flame reactor. Powder Technol. 181, 9–20 (2008) Yu, M.Z., Lin, J.Z., Chan, T.L.: Numerical simulation of nanoparticle synthesis in diffusion flame reactor. Powder Technol. 181, 9–20 (2008)
74.
go back to reference Aristizabal, F., Munz, R.J., Berk, D.: Turbulent modeling of the production of ultra fine aluminum particles: scale-up. Aerosol Sci. Technol. 42, 556–565 (2008)CrossRef Aristizabal, F., Munz, R.J., Berk, D.: Turbulent modeling of the production of ultra fine aluminum particles: scale-up. Aerosol Sci. Technol. 42, 556–565 (2008)CrossRef
75.
go back to reference Zhao, H., Liu, X.F., Tse, S.D.: Effects of pressure and precursor loading in the flame synthesis of titania nanoparticles. J. Aerosol Sci. 40, 919–937 (2009)CrossRef Zhao, H., Liu, X.F., Tse, S.D.: Effects of pressure and precursor loading in the flame synthesis of titania nanoparticles. J. Aerosol Sci. 40, 919–937 (2009)CrossRef
76.
go back to reference De Filippo, A., Sgro, L.A., Lanzuolo, G., D’Alessio, A.: Probe measurements and numerical model predictions of evolving size distributions in premixed flames. Combust. Flame 156, 1744–1754 (2009)CrossRef De Filippo, A., Sgro, L.A., Lanzuolo, G., D’Alessio, A.: Probe measurements and numerical model predictions of evolving size distributions in premixed flames. Combust. Flame 156, 1744–1754 (2009)CrossRef
77.
go back to reference Chen, K.L., Elimelech, M.: Aggregation and deposition kinetics of fullerene (c-60) nanoparticles. Langmuir 22, 10994–11001 (2006)CrossRef Chen, K.L., Elimelech, M.: Aggregation and deposition kinetics of fullerene (c-60) nanoparticles. Langmuir 22, 10994–11001 (2006)CrossRef
78.
go back to reference Kim, D.S., Hong, S.B., Kim, Y.J., Lee, K.W.: Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence. J. Aerosol Sci. 37, 1781–1787 (2006)CrossRef Kim, D.S., Hong, S.B., Kim, Y.J., Lee, K.W.: Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence. J. Aerosol Sci. 37, 1781–1787 (2006)CrossRef
79.
go back to reference Liu, N., Liu, C.L., Zhang, J., Lin, D.H.: Removal of dispersant-stabilized carbon nanotubes by regular coagulants. J. Environ. Sci. 24, 1364–1370 (2012)CrossRef Liu, N., Liu, C.L., Zhang, J., Lin, D.H.: Removal of dispersant-stabilized carbon nanotubes by regular coagulants. J. Environ. Sci. 24, 1364–1370 (2012)CrossRef
Metadata
Title
A review of research on nanoparticulate flow undergoing coagulation
Authors
Jianzhong Lin
Linlin Huo
Publication date
01-06-2015
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 3/2015
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0398-5

Other articles of this Issue 3/2015

Acta Mechanica Sinica 3/2015 Go to the issue

Premium Partners