Skip to main content
Top
Published in: Journal of Nanoparticle Research 5/2010

01-06-2010 | Review Paper

A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

Authors: Catalina Marambio-Jones, Eric M. V. Hoek

Published in: Journal of Nanoparticle Research | Issue 5/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver–dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules—all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abid J, Wark A, Brevet P, Girault H (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun 792–793. doi: 10.1039/b200272h Abid J, Wark A, Brevet P, Girault H (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun 792–793. doi: 10.​1039/​b200272h
go back to reference Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318. doi:10.1002/cbic.200700592 CrossRef Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318. doi:10.​1002/​cbic.​200700592 CrossRef
go back to reference Amro N, Kotra L, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796. doi:10.1021/la991013x CrossRef Amro N, Kotra L, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796. doi:10.​1021/​la991013x CrossRef
go back to reference Auerbach SM (2003) Zeolite science and technology. Marcel Dekker, New York Auerbach SM (2003) Zeolite science and technology. Marcel Dekker, New York
go back to reference Batabyal S, Basu C, Das A, Sanyal G (2007) Green chemical synthesis of silver nanowires and microfibers using starch. J Biobased Mater Bioenergy 1:143–147. doi:10.1166/jbmb.2007.016 Batabyal S, Basu C, Das A, Sanyal G (2007) Green chemical synthesis of silver nanowires and microfibers using starch. J Biobased Mater Bioenergy 1:143–147. doi:10.​1166/​jbmb.​2007.​016
go back to reference Brown C, Parchaso F, Thompson J, Luoma S (2003) Assessing toxicant effects in a complex estuary: a case study of effects of silver on reproduction in the bivalve, Potamocorbula amurensis, in San Francisco Bay. Hum Ecol Risk Assess 9:95–119. doi:10.1080/713609854 CrossRef Brown C, Parchaso F, Thompson J, Luoma S (2003) Assessing toxicant effects in a complex estuary: a case study of effects of silver on reproduction in the bivalve, Potamocorbula amurensis, in San Francisco Bay. Hum Ecol Risk Assess 9:95–119. doi:10.​1080/​713609854 CrossRef
go back to reference Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619. doi:10.1021/jp712087m PubMedCrossRef Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619. doi:10.​1021/​jp712087m PubMedCrossRef
go back to reference Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766. doi:10.1021/jp8035814 CrossRef Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766. doi:10.​1021/​jp8035814 CrossRef
go back to reference Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668PubMedCrossRef Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668PubMedCrossRef
go back to reference Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024. doi:10.1093/Jac/Dkh478 PubMedCrossRef Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024. doi:10.​1093/​Jac/​Dkh478 PubMedCrossRef
go back to reference Galiano K, Pleifer C, Engelhardt K, Brossner G, Lackner P, Huck C, Lass-Florl C, Obwegeser A (2008) Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol Res 30:285–287. doi:10.1179/016164107x229902 PubMedCrossRef Galiano K, Pleifer C, Engelhardt K, Brossner G, Lackner P, Huck C, Lass-Florl C, Obwegeser A (2008) Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol Res 30:285–287. doi:10.​1179/​016164107x229902​ PubMedCrossRef
go back to reference Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in Natural River water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328. doi:10.1021/es803315v PubMedCrossRef Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in Natural River water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328. doi:10.​1021/​es803315v PubMedCrossRef
go back to reference Gulrajani M, Gupta D, Periyasamy S, Muthu S (2008) Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J Appl Polym Sci 108:614–623. doi:10.1002/app.27584 CrossRef Gulrajani M, Gupta D, Periyasamy S, Muthu S (2008) Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J Appl Polym Sci 108:614–623. doi:10.​1002/​app.​27584 CrossRef
go back to reference Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045PubMed Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045PubMed
go back to reference Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402PubMed Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402PubMed
go back to reference Hernandez-Sierra J, Ruiz F, Pena D, Martinez-Gutierrez F, Martinez A, Guillen A, Tapia-Perez H, Castanon G (2008) The antimicrobial sensitivity of Streptococcus mutants to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol 4:237–240. doi:10.1016/j.nano.2008.04.005 CrossRef Hernandez-Sierra J, Ruiz F, Pena D, Martinez-Gutierrez F, Martinez A, Guillen A, Tapia-Perez H, Castanon G (2008) The antimicrobial sensitivity of Streptococcus mutants to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol 4:237–240. doi:10.​1016/​j.​nano.​2008.​04.​005 CrossRef
go back to reference Hlidek P, Biederman H, Choukourov A, Slavinska D (2008) Behavior of polymeric matrices containing silver inclusions. 1—Review of adsorption and oxidation of hydrocarbons on silver surfaces/interfaces as witnessed by FT-IR spectroscopy. Plasma Process Polym 5:807–824. doi:10.1002/ppap.200800083 CrossRef Hlidek P, Biederman H, Choukourov A, Slavinska D (2008) Behavior of polymeric matrices containing silver inclusions. 1—Review of adsorption and oxidation of hydrocarbons on silver surfaces/interfaces as witnessed by FT-IR spectroscopy. Plasma Process Polym 5:807–824. doi:10.​1002/​ppap.​200800083 CrossRef
go back to reference Holt K, Bard A (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochemistry 44:13214–13223. doi:10.1021/bi0508542 PubMedCrossRef Holt K, Bard A (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochemistry 44:13214–13223. doi:10.​1021/​bi0508542 PubMedCrossRef
go back to reference Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. doi:10.2174/157341308784340804 ADSCrossRef Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. doi:10.​2174/​1573413087843408​04 ADSCrossRef
go back to reference Jung W, Koo H, Kim K, Shin S, Kim S, Park Y (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. doi:10.1128/AEM.02001-07 PubMedCrossRef Jung W, Koo H, Kim K, Shin S, Kim S, Park Y (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. doi:10.​1128/​AEM.​02001-07 PubMedCrossRef
go back to reference Kim J (2007) Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13:718–722 Kim J (2007) Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13:718–722
go back to reference Kim K, Sung W, Moon S, Choi J, Kim J, Lee D (2008a) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484PubMed Kim K, Sung W, Moon S, Choi J, Kim J, Lee D (2008a) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484PubMed
go back to reference Kim Y, Kim J, Cho H, Rha D, Kim J, Park J, Choi B, Lim R, Chang H, Chung Y, Kwon I, Jeong J, Han B, Yu I (2008b) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583. doi:10.1080/08958370701874663 PubMedCrossRef Kim Y, Kim J, Cho H, Rha D, Kim J, Park J, Choi B, Lim R, Chang H, Chung Y, Kwon I, Jeong J, Han B, Yu I (2008b) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583. doi:10.​1080/​0895837070187466​3 PubMedCrossRef
go back to reference Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834. doi:10.1021/jp711616v CrossRef Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834. doi:10.​1021/​jp711616v CrossRef
go back to reference Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2002) Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2954. doi:10.1016/S0008-6223(02)00246-4 Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2002) Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2954. doi:10.​1016/​S0008-6223(02)00246-4
go back to reference Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2004) Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver bactericidal activity of ACF(Ag) mediated by ROS. J Inorg Biochem 98:1054–1060. doi:10.1016/j.jinorgbio.2004.02.025 PubMedCrossRef Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2004) Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver bactericidal activity of ACF(Ag) mediated by ROS. J Inorg Biochem 98:1054–1060. doi:10.​1016/​j.​jinorgbio.​2004.​02.​025 PubMedCrossRef
go back to reference Lesniak W, Bielinska A, Sun K, Janczak K, Shi X, Baker J, Balogh L (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5:2123–2130. doi:10.1021/nl051077u PubMedADSCrossRef Lesniak W, Bielinska A, Sun K, Janczak K, Shi X, Baker J, Balogh L (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5:2123–2130. doi:10.​1021/​nl051077u PubMedADSCrossRef
go back to reference Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858. doi:10.1039/b615357g CrossRef Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858. doi:10.​1039/​b615357g CrossRef
go back to reference Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam P, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi:10.1021/pr0504079 PubMedCrossRef Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam P, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi:10.​1021/​pr0504079 PubMedCrossRef
go back to reference Lu L, Sun R, Chen R, Hui C, Ho C, Luk J, Lau G, Che C (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262PubMed Lu L, Sun R, Chen R, Hui C, Ho C, Luk J, Lau G, Che C (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262PubMed
go back to reference Manzi AE, van Halbeek H (1999) Saccharide structure and nomenclature. In: Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (eds) Essentials of glycobiology, 1st edn. Cold Spring Harbor Laboratory Press, New York Manzi AE, van Halbeek H (1999) Saccharide structure and nomenclature. In: Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (eds) Essentials of glycobiology, 1st edn. Cold Spring Harbor Laboratory Press, New York
go back to reference Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348. doi:10.1007/s11051-008-9428-6 CrossRef Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348. doi:10.​1007/​s11051-008-9428-6 CrossRef
go back to reference Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi H, Shahverdi A (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421. doi:10.1016/j.materresbull.2008.11.021 CrossRef Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi H, Shahverdi A (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421. doi:10.​1016/​j.​materresbull.​2008.​11.​021 CrossRef
go back to reference Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M, Parishcha R, Ajaykumar P, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. doi:10.1021/nl0155274 ADSCrossRef Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M, Parishcha R, Ajaykumar P, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. doi:10.​1021/​nl0155274 ADSCrossRef
go back to reference Naidu B, Park J, Kim S, Park S, Lee E, Yoon K, Lee S, Lee J, Gal Y, Jin S (2008) Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer: fullerene bulk-heterojunction structures. Sol Energy Mater Sol Cells 92:397–401. doi:10.1016/j.solmat.2007.09.017 CrossRef Naidu B, Park J, Kim S, Park S, Lee E, Yoon K, Lee S, Lee J, Gal Y, Jin S (2008) Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer: fullerene bulk-heterojunction structures. Sol Energy Mater Sol Cells 92:397–401. doi:10.​1016/​j.​solmat.​2007.​09.​017 CrossRef
go back to reference Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964. doi:10.1021/es801785m PubMedCrossRef Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964. doi:10.​1021/​es801785m PubMedCrossRef
go back to reference Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557. doi:10.1038/nmat2442 PubMedADSCrossRef Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557. doi:10.​1038/​nmat2442 PubMedADSCrossRef
go back to reference Nita T (2008) Synthesis of antimicrobial polymer composition and in vitro drugs release study. e-Polymers Nita T (2008) Synthesis of antimicrobial polymer composition and in vitro drugs release study. e-Polymers
go back to reference Pal S, Tak Y, Song J (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06 PubMedCrossRef Pal S, Tak Y, Song J (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.​1128/​AEM.​02218-06 PubMedCrossRef
go back to reference Pal S, Tak YK, Joardar J, Kim W, Lee JE, Han MS, Song JM (2009) Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions. J Nanosci Nanotechnol 9:2092–2103. doi:10.1166/jnn.2009.427 PubMedCrossRef Pal S, Tak YK, Joardar J, Kim W, Lee JE, Han MS, Song JM (2009) Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions. J Nanosci Nanotechnol 9:2092–2103. doi:10.​1166/​jnn.​2009.​427 PubMedCrossRef
go back to reference Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma V, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.1021/jp063826h PubMedCrossRef Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma V, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.​1021/​jp063826h PubMedCrossRef
go back to reference Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129 Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129
go back to reference Pillai Z, Kamat P (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951. doi:10.1021/jp037018r CrossRef Pillai Z, Kamat P (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951. doi:10.​1021/​jp037018r CrossRef
go back to reference Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196 Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196
go back to reference Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876. doi:10.1093/jac/dkn034 PubMedCrossRef Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876. doi:10.​1093/​jac/​dkn034 PubMedCrossRef
go back to reference Saito Y, Wang J, Batchelder D, Smith D (2003) Simple chemical method for forming silver surfaces with controlled grain sizes for surface plasmon experiments. Langmuir 19:6857–6861. doi:10.1021/la0301240 CrossRef Saito Y, Wang J, Batchelder D, Smith D (2003) Simple chemical method for forming silver surfaces with controlled grain sizes for surface plasmon experiments. Langmuir 19:6857–6861. doi:10.​1021/​la0301240 CrossRef
go back to reference Sambhy V, Sen A (2008) Novel process of incorporating silver biocides into polymers. Chim Oggi 26:16–18 Sambhy V, Sen A (2008) Novel process of incorporating silver biocides into polymers. Chim Oggi 26:16–18
go back to reference Schreurs W, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13PubMed Schreurs W, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13PubMed
go back to reference Senapati S, Mandal D, Ahmad A, Khan M, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78A:101–105 Senapati S, Mandal D, Ahmad A, Khan M, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78A:101–105
go back to reference Sharma S, Thakur M, Deb MK (2008) Preparation of silver nanoparticles by microwave irradiation. Curr Nanosci 4:138–140ADSCrossRef Sharma S, Thakur M, Deb MK (2008) Preparation of silver nanoparticles by microwave irradiation. Curr Nanosci 4:138–140ADSCrossRef
go back to reference Shirtcliffe N, Nickel U, Schneider S (1999) Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles. J Colloid Interface Sci 211:122–129. doi:10.1006/jcis.1998.5980 PubMedCrossRef Shirtcliffe N, Nickel U, Schneider S (1999) Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles. J Colloid Interface Sci 211:122–129. doi:10.​1006/​jcis.​1998.​5980 PubMedCrossRef
go back to reference Slonczewski J, Foster J (2009) Microbiology: an evolving science. W. W. Norton & Co, New York Slonczewski J, Foster J (2009) Microbiology: an evolving science. W. W. Norton & Co, New York
go back to reference Stoeva S, Klabunde K, Sorensen C, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124:2305–2311. doi:10.1021/ja012076g PubMedCrossRef Stoeva S, Klabunde K, Sorensen C, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124:2305–2311. doi:10.​1021/​ja012076g PubMedCrossRef
go back to reference Sun L, Singh A, Vig K, Pillai S, Singh S (2008) Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol 4:149–158. doi:10.1166/jbn.2008.012 Sun L, Singh A, Vig K, Pillai S, Singh S (2008) Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol 4:149–158. doi:10.​1166/​jbn.​2008.​012
go back to reference Sung J, Ji J, Yoon J, Kim D, Song M, Jeong J, Han B, Han J, Chung Y, Kim J, Kim T, Chang H, Lee E, Lee J, Yu I (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574. doi:10.1080/08958370701874671 PubMedCrossRef Sung J, Ji J, Yoon J, Kim D, Song M, Jeong J, Han B, Han J, Chung Y, Kim J, Kim T, Chang H, Lee E, Lee J, Yu I (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574. doi:10.​1080/​0895837070187467​1 PubMedCrossRef
go back to reference Xu X, Brownlow W, Kyriacou S, Wan Q, Viola J (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:10400–10413. doi:10.1021/bi036231a PubMedCrossRef Xu X, Brownlow W, Kyriacou S, Wan Q, Viola J (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:10400–10413. doi:10.​1021/​bi036231a PubMedCrossRef
go back to reference Yanagihara N, Tanaka Y, Okamoto H (2001) Formation of silver nanoparticles in poly(methyl methacrylate) by UV irradiation. Chem Lett 30:796–797CrossRef Yanagihara N, Tanaka Y, Okamoto H (2001) Formation of silver nanoparticles in poly(methyl methacrylate) by UV irradiation. Chem Lett 30:796–797CrossRef
go back to reference Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4. Nanocrystals 314:964–967. doi:10.1126/science.1131475 Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4. Nanocrystals 314:964–967. doi:10.​1126/​science.​1131475
go back to reference Yeo M, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184CrossRef Yeo M, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184CrossRef
go back to reference Yeo M, Yoon J (2009) Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 5:23–31 Yeo M, Yoon J (2009) Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 5:23–31
go back to reference Yoon K, Byeon J, Park J, Ji J, Bae G, Hwang J (2008b) Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis bioaerosols. Environ Eng Sci 25:289–293. doi:10.1089/ees.2007.0003 CrossRef Yoon K, Byeon J, Park J, Ji J, Bae G, Hwang J (2008b) Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis bioaerosols. Environ Eng Sci 25:289–293. doi:10.​1089/​ees.​2007.​0003 CrossRef
Metadata
Title
A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment
Authors
Catalina Marambio-Jones
Eric M. V. Hoek
Publication date
01-06-2010
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 5/2010
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-010-9900-y

Other articles of this Issue 5/2010

Journal of Nanoparticle Research 5/2010 Go to the issue

Premium Partners