Skip to main content
Top

2021 | OriginalPaper | Chapter

A Review on Designs of Various Ankle Foot Orthosis (AFO) Used to Treat Drop Foot Disease

Authors : Prashanth R. Kubasad, Somasekhara Rao Todeti, Yogeesh D. Kamat

Published in: Mechanism and Machine Science

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Compared to the last few decades, there is an increase in prevalence of neuromuscular diseases like stroke, multiple sclerosis, and cerebral palsy. These diseases cause lower limb disability like drop foot. The main reason for drop foot is weakness in dorsiflexor muscles. Drop foot results in ‘toe drag during swing phase’ and ‘foot slap during heel contact’. Ankle foot orthosis (AFO) is a mechanical device, which is used to treat drop foot. Based on usage of sensors, actuators, and control systems, there are three types of AFOs: Semi active, Active, and Passive AFOs. Semi active and Active AFOs contain sensors, actuators, control systems, and onboard power source. Passive AFOs do not contain electrical boards but contain mechanical elements to control relative motion between foot part and shank part of the AFOs. Based on relative motion between foot and shank parts of AFOs, AFOs are also classified into two types: Non-articulated (or Fixed) and Articulated AFOs. Non-articulated AFOs are single piece devices having no relative motion between foot part and shank part of the device. Articulated AFOs are two-piece devices, having relative motion between foot part and shank part of the device, and the relative motion is controlled by passive and active actuators. In this paper, different working principles, advantages, and disadvantages of the existing AFOs are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rose J, Gamble JG (2006) Human walking, 3rd edn. Lippincott Williams and Wilkins, Philadelphia Rose J, Gamble JG (2006) Human walking, 3rd edn. Lippincott Williams and Wilkins, Philadelphia
2.
go back to reference Whittle MW (1991) Gait analysis: an introduction, 1st edn. Butterworth-Heinemann Whittle MW (1991) Gait analysis: an introduction, 1st edn. Butterworth-Heinemann
3.
go back to reference Birch R (2008) A history of limb amputation. J Bone Jt Surg Br 90–B(10):1276–1277 Birch R (2008) A history of limb amputation. J Bone Jt Surg Br 90–B(10):1276–1277
4.
go back to reference Gage J (1990) An overview of normal walking. Instructional course lectures, vol 39. University of Waterloo Press Gage J (1990) An overview of normal walking. Instructional course lectures, vol 39. University of Waterloo Press
5.
go back to reference Perry J (1992) Gait analysis: normal and pathological function. Slack Incorporated Perry J (1992) Gait analysis: normal and pathological function. Slack Incorporated
6.
go back to reference Meinders M, Gitter A, Czerniecki JM (1998) The role of ankle plantar flexor muscle work during walking. Scand J Rehabil Med 30(1):39–46CrossRef Meinders M, Gitter A, Czerniecki JM (1998) The role of ankle plantar flexor muscle work during walking. Scand J Rehabil Med 30(1):39–46CrossRef
7.
go back to reference Durham S, Eve L, Stevens C, Ewins D (2004) Effect of functional electrical stimulation on asymmetries in gait of children with hemiplegic cerebral palsy. Physiotherapy 90(2):82–90CrossRef Durham S, Eve L, Stevens C, Ewins D (2004) Effect of functional electrical stimulation on asymmetries in gait of children with hemiplegic cerebral palsy. Physiotherapy 90(2):82–90CrossRef
8.
go back to reference Stewart JD (2008) Foot drop: where, why and what to do? Pract Neurol 8(3):158–169CrossRef Stewart JD (2008) Foot drop: where, why and what to do? Pract Neurol 8(3):158–169CrossRef
9.
go back to reference Bregman DJJ, Harlaar J, Meskers CGM, De Groot V (2012) Spring-like ankle foot orthoses reduce the energy cost of walking by taking over ankle work. Gait Posture 35(1):148–153CrossRef Bregman DJJ, Harlaar J, Meskers CGM, De Groot V (2012) Spring-like ankle foot orthoses reduce the energy cost of walking by taking over ankle work. Gait Posture 35(1):148–153CrossRef
10.
go back to reference Bhadane Deshpande M (2012) Towards a shape memory alloy based variable stiffness ankle foot orthosis. PhD thesis, The University of Toledo Bhadane Deshpande M (2012) Towards a shape memory alloy based variable stiffness ankle foot orthosis. PhD thesis, The University of Toledo
11.
go back to reference Yamamoto S, Ebina M, Kubo S, Hayashi T, Akita Y, Hayakawa Y (1999) Development of an ankle foot orthosis with dorsiflexion assit, part 2: structure and evaluation. J Prosthet Orthot 11(2) Yamamoto S, Ebina M, Kubo S, Hayashi T, Akita Y, Hayakawa Y (1999) Development of an ankle foot orthosis with dorsiflexion assit, part 2: structure and evaluation. J Prosthet Orthot 11(2)
12.
go back to reference Ramsey JA (2011) Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness. Prosthet Orthot Int Ramsey JA (2011) Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness. Prosthet Orthot Int
13.
go back to reference Yamamoto S, Ebina M, Miyazaki S, Kawai H, Kubota T (1997) Development of a new ankle-foot orthoses with dorsiflexion assist, part 1—desirable characteristics of ankle-foot orthoses for hemiplegic patients. J Prosthet Orthot 9(4) Yamamoto S, Ebina M, Miyazaki S, Kawai H, Kubota T (1997) Development of a new ankle-foot orthoses with dorsiflexion assist, part 1—desirable characteristics of ankle-foot orthoses for hemiplegic patients. J Prosthet Orthot 9(4)
14.
go back to reference Yamamoto S, Hagiwara A, Mizobe T, Yokoyama O, Yasui T (2005) Development of an ankle-foot orthosis with an oil damper. Prosthet Orthot Int 29(3):209–219CrossRef Yamamoto S, Hagiwara A, Mizobe T, Yokoyama O, Yasui T (2005) Development of an ankle-foot orthosis with an oil damper. Prosthet Orthot Int 29(3):209–219CrossRef
15.
go back to reference Yokoyama O, Sashika H, Hagiwara A, Yamamoto S, Yasui T (2005) Kinematic effects on gait of a newly designed ankle-foot orthosis with oil damper resistance: a case series of 2 patients with hemiplegia. Arch Phys Med Rehabil 86(1):162–166CrossRef Yokoyama O, Sashika H, Hagiwara A, Yamamoto S, Yasui T (2005) Kinematic effects on gait of a newly designed ankle-foot orthosis with oil damper resistance: a case series of 2 patients with hemiplegia. Arch Phys Med Rehabil 86(1):162–166CrossRef
16.
go back to reference Berkelman P, Rossi P, Lu T, Ma J (2007) Passive orthosis linkage for locomotor rehabilitation. In: 2007 IEEE 10th international conference on rehabilitation robotics ICORR’07, vol 00, no c, pp 425–431 Berkelman P, Rossi P, Lu T, Ma J (2007) Passive orthosis linkage for locomotor rehabilitation. In: 2007 IEEE 10th international conference on rehabilitation robotics ICORR’07, vol 00, no c, pp 425–431
17.
go back to reference Chin R et al (2009) A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. J Neuroeng Rehabil 6(1):1–11CrossRef Chin R et al (2009) A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. J Neuroeng Rehabil 6(1):1–11CrossRef
18.
go back to reference Ghosh S, Robson N, McCarthy JM (2017) Design of wearable lower leg orthotic based on six-bar linkage. IDETC/CIE, pp 1–10 Ghosh S, Robson N, McCarthy JM (2017) Design of wearable lower leg orthotic based on six-bar linkage. IDETC/CIE, pp 1–10
19.
go back to reference Ghosh S, Robson N, McCarthy JM (2018) Development of customized orthotics based on lower-leg anthropometric data and task. In: International conference on applied human factors and ergonomics, vol 608 Ghosh S, Robson N, McCarthy JM (2018) Development of customized orthotics based on lower-leg anthropometric data and task. In: International conference on applied human factors and ergonomics, vol 608
20.
go back to reference Furusho J, Kikuchi T, Tokuda M, Kakehashi T, Ikeda K, Morimoto S, Hashimoto Y, Tomiyama H, Nakagawa A, Akazawa Y (2007) Development of shear type compact MR brake for the intelligent ankle-foot orthosis and its control. In: IEEE 10th international conference on rehabilitation robotics ICORR’07, vol 00, no c, pp 89–94 Furusho J, Kikuchi T, Tokuda M, Kakehashi T, Ikeda K, Morimoto S, Hashimoto Y, Tomiyama H, Nakagawa A, Akazawa Y (2007) Development of shear type compact MR brake for the intelligent ankle-foot orthosis and its control. In: IEEE 10th international conference on rehabilitation robotics ICORR’07, vol 00, no c, pp 89–94
21.
go back to reference Mataee MG, Andani MT, Elahinia M (2015) Adaptive ankle-foot orthoses based on superelasticity of shape memory alloys. J Intell Mater Syst Struct 26(6):639–651CrossRef Mataee MG, Andani MT, Elahinia M (2015) Adaptive ankle-foot orthoses based on superelasticity of shape memory alloys. J Intell Mater Syst Struct 26(6):639–651CrossRef
22.
go back to reference Blaya J, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop foot gait. Neural Syst Rehabil Eng IEEE Trans 12(1):24–31CrossRef Blaya J, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop foot gait. Neural Syst Rehabil Eng IEEE Trans 12(1):24–31CrossRef
23.
go back to reference Agrawal A, Banala SK, Agrawal SK, Binder-Macleod SA (2005) Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation. In: IEEE 9th International Conference on Rehabilitation Robotics, pp 41–44 Agrawal A, Banala SK, Agrawal SK, Binder-Macleod SA (2005) Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation. In: IEEE 9th International Conference on Rehabilitation Robotics, pp 41–44
24.
go back to reference Patar A, Jamlus N, Makhtar K, Mahmud J, Komeda T (2012) Development of dynamic ankle foot orthosis for therapeutic application. Int Symp Robot Intell Sensors 41(Iris):1432–1440 Patar A, Jamlus N, Makhtar K, Mahmud J, Komeda T (2012) Development of dynamic ankle foot orthosis for therapeutic application. Int Symp Robot Intell Sensors 41(Iris):1432–1440
25.
go back to reference Zhang C, Zhu Y, Fan J, Zhao J, Yu H (2015) Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis. Biomed Mater Eng 26(2):647–654 Zhang C, Zhu Y, Fan J, Zhao J, Yu H (2015) Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis. Biomed Mater Eng 26(2):647–654
26.
go back to reference Moltedo M, Bacek T, Junius K, Vanderborght B, Lefeber D (2016) Mechanical design of a lightweight compliant and adaptable active ankle foot orthosis. IEEE RAS/EMBS Int Conf Biomed Robot Biomech 1224–1229 Moltedo M, Bacek T, Junius K, Vanderborght B, Lefeber D (2016) Mechanical design of a lightweight compliant and adaptable active ankle foot orthosis. IEEE RAS/EMBS Int Conf Biomed Robot Biomech 1224–1229
27.
go back to reference Gmerek A, Davoodi M, Meskin N, Tehrani ES, Kearney RE (2017) A new ankle foot orthosis: modeling and control. Int Conf Control Decis Inf Technol 1:1066–1071 Gmerek A, Davoodi M, Meskin N, Tehrani ES, Kearney RE (2017) A new ankle foot orthosis: modeling and control. Int Conf Control Decis Inf Technol 1:1066–1071
28.
go back to reference Wilk DVD, Reints R, Postema K, Gort T, Harlaar J, Hijmans JM, Verkere GJ (2018) Development of an ankle-foot orthosis that provides support for flaccid paretic plantarflexor and dorsiflexor muscles. IEEE Trans Neural Syst Rehabil Eng 26(5):1036–1045CrossRef Wilk DVD, Reints R, Postema K, Gort T, Harlaar J, Hijmans JM, Verkere GJ (2018) Development of an ankle-foot orthosis that provides support for flaccid paretic plantarflexor and dorsiflexor muscles. IEEE Trans Neural Syst Rehabil Eng 26(5):1036–1045CrossRef
29.
go back to reference Yamamoto S, Ibayashi S, Fuchi M, Yasui T (2015) Immediate-term effects of use of an ankle–foot orthosis with an oil damper on the gait of stroke patients when walking without the device. Prosthet Orthot Int 39(2):140–149CrossRef Yamamoto S, Ibayashi S, Fuchi M, Yasui T (2015) Immediate-term effects of use of an ankle–foot orthosis with an oil damper on the gait of stroke patients when walking without the device. Prosthet Orthot Int 39(2):140–149CrossRef
Metadata
Title
A Review on Designs of Various Ankle Foot Orthosis (AFO) Used to Treat Drop Foot Disease
Authors
Prashanth R. Kubasad
Somasekhara Rao Todeti
Yogeesh D. Kamat
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4477-4_56

Premium Partners