Skip to main content
Top

2025 | OriginalPaper | Chapter

A Review on Ensemble Techniques and Its Application on Social Bot Detection

Authors : Jwala Sharma, Samarjeet Borah

Published in: Advances in Communication, Devices and Networking

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Social media attracts all kinds of activities, including product marketing, celebrity marketing, and also it serves as platform for promoting political agenda. As it is gaining popularity from all various source, it has also attracted spammers and automated accounts that are responsible for spreading the misinformation and influencing the audience. In this context, there is a need to properly classify the social media account as bot account or human account. For classification and detection of social bots, different machine learning, deep learning techniques are implemented. In this paper, we have focused on ensemble technique for classification of social bot. Considering heterogeneous base classifier, such as decision tree, logistic regression and k-neighbor classifier, an ensemble model has been built, that combines the prediction of base classifier, and gives the final prediction. The ensemble approach that has been implemented are, majority voting, random forest and bagging with decision tree.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ferrara E, Varol O, Davis C, Menczer F, Flammini A (2016) The rise of social bots. Commun ACM 59(7):96–104CrossRef Ferrara E, Varol O, Davis C, Menczer F, Flammini A (2016) The rise of social bots. Commun ACM 59(7):96–104CrossRef
2.
go back to reference Bessi A, Ferrara E (2016) Social bots distort the 2016 US presidential election online discussion. First Monday 21(11) Bessi A, Ferrara E (2016) Social bots distort the 2016 US presidential election online discussion. First Monday 21(11)
3.
go back to reference Ferrara E (2017) Disinformation and social bot operations in the run up to the 2017 French presidential election. First Monday 22(8) Ferrara E (2017) Disinformation and social bot operations in the run up to the 2017 French presidential election. First Monday 22(8)
4.
go back to reference Subrahmanian VS, Azaria A, Durst S, Kagan V, Galstyan A, Lerman K, Zhu L, Ferrara E, Flammini A, Menczer F (2016) The DARPA Twitter bot challenge. Computer 49(6):38–46CrossRef Subrahmanian VS, Azaria A, Durst S, Kagan V, Galstyan A, Lerman K, Zhu L, Ferrara E, Flammini A, Menczer F (2016) The DARPA Twitter bot challenge. Computer 49(6):38–46CrossRef
5.
go back to reference Rokach L (2005) Ensemble methods for classifiers. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, US, pp 957–980CrossRef Rokach L (2005) Ensemble methods for classifiers. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, US, pp 957–980CrossRef
6.
go back to reference Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications
7.
go back to reference Sayyadiharikandeh M, Varol O, Yang K-C, Flammini A, Menczer F (2020) Detection of novel social bots by ensembles of specialized classifiers Sayyadiharikandeh M, Varol O, Yang K-C, Flammini A, Menczer F (2020) Detection of novel social bots by ensembles of specialized classifiers
8.
go back to reference Bauer E (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Computer Science Department, Stanford University Bauer E (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Computer Science Department, Stanford University
10.
go back to reference Tama BA, Lim S (2021) Ensemble learning for intrusion detection systems: a systematic mapping study and cross-benchmark evaluation Tama BA, Lim S (2021) Ensemble learning for intrusion detection systems: a systematic mapping study and cross-benchmark evaluation
11.
go back to reference Abu Al-Haija Q, Al-Dala’ien M (2022) ELBA-IoT: an ensemble learning model for botnet attack detection in IoT networks Abu Al-Haija Q, Al-Dala’ien M (2022) ELBA-IoT: an ensemble learning model for botnet attack detection in IoT networks
12.
go back to reference Alghamdi R, Bellaiche M (2023) An ensemble deep learning-based IDS for IoT using Lambda architecture Alghamdi R, Bellaiche M (2023) An ensemble deep learning-based IDS for IoT using Lambda architecture
13.
go back to reference Sagi O, Rokach L (2018) Ensemble learning: a survey Sagi O, Rokach L (2018) Ensemble learning: a survey
14.
go back to reference Yang AM, Yang YX, Jiang SY (2008) Approaches of individual classifier generation and classifier set selection for fuzzy classifier ensemble. In: 2008 fifth international conference on fuzzy systems and knowledge discovery, vol 1. IEEE, pp 519–524 Yang AM, Yang YX, Jiang SY (2008) Approaches of individual classifier generation and classifier set selection for fuzzy classifier ensemble. In: 2008 fifth international conference on fuzzy systems and knowledge discovery, vol 1. IEEE, pp 519–524
15.
go back to reference Kamel S, Wanas NM (2003) Data dependence in combining classifiers. In: Proceedings of the 4th international conference on multiple classifier systems (MCS’03), Guildford, UK. LNCS, vol 2709. Springer, pp 1–14 Kamel S, Wanas NM (2003) Data dependence in combining classifiers. In: Proceedings of the 4th international conference on multiple classifier systems (MCS’03), Guildford, UK. LNCS, vol 2709. Springer, pp 1–14
16.
go back to reference Shahzad RK, Lavesson N (2013) Comparative analysis of voting schemes for ensemble-based Malware detection Shahzad RK, Lavesson N (2013) Comparative analysis of voting schemes for ensemble-based Malware detection
17.
go back to reference Tsai C-F, Lin Y-C, Yen DC, Chen Y-M (2011) Predicting stock returns by classifier ensembles Tsai C-F, Lin Y-C, Yen DC, Chen Y-M (2011) Predicting stock returns by classifier ensembles
18.
go back to reference Wu Z, Li N, Peng J, Cui H, Liu P, Li H, Li X (2018) Using an ensemble machine learning methodology—bagging to predict occupants’ thermal comfort in buildings Wu Z, Li N, Peng J, Cui H, Liu P, Li H, Li X (2018) Using an ensemble machine learning methodology—bagging to predict occupants’ thermal comfort in buildings
19.
go back to reference Haghighi F, Omranpour H (2021) Stacking ensemble model of deep learning and its application to Persian/Arabic handwritten digits recognition Haghighi F, Omranpour H (2021) Stacking ensemble model of deep learning and its application to Persian/Arabic handwritten digits recognition
20.
go back to reference Afrifa S, Varadarajan V, Appiahene P, Zhang T (2023) Ensemble machine learning techniques for accurate and efficient detection of botnet attacks in connected computers Afrifa S, Varadarajan V, Appiahene P, Zhang T (2023) Ensemble machine learning techniques for accurate and efficient detection of botnet attacks in connected computers
Metadata
Title
A Review on Ensemble Techniques and Its Application on Social Bot Detection
Authors
Jwala Sharma
Samarjeet Borah
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_12