Skip to main content
Top

2024 | OriginalPaper | Chapter

A Review on IoT Energy Storage with Nanocarbon Materials: Requirements, State-of-the-Art, Challenges, and Future Scope

Author : Partha Pratim Ray

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rapid proliferation of the Internet of Things (IoT) has significantly impacted various industries, necessitating advanced energy storage solutions that cater to the diverse needs of IoT applications. Nanocarbon materials have emerged as a promising candidate for IoT energy storage due to their remarkable properties, such as high electrical conductivity, large surface area, and excellent mechanical strength. This review comprehensively examines the requirements, state-of-the-art, challenges, and future scope of IoT energy storage devices incorporating nanocarbon materials. The review begins by highlighting the critical role of energy storage in the IoT landscape and the potential of nanocarbon materials to address these requirements. The discussion proceeds to explore the diverse energy needs of IoT applications, including miniaturization, form factor constraints, battery life, energy efficiency, environmental factors, safety, reliability, and integration with energy harvesting technologies. State-of-the-art nanocarbon materials, such as carbon nanotubes, graphene, carbon nanofibers, fullerene, graphene quantum dots, carbon nanohorns, carbon aerogels, and carbon nano-onions, are thoroughly analyzed, along with their specific applications in various energy storage devices, including supercapacitors, lithium-ion batteries, metal-air batteries, flexible and wearable energy storage devices, energy harvesting systems, hybrid systems, and electrochemical capacitors. The review also provides an insightful comparison and evaluation of the trade-offs among different nanocarbon materials. Furthermore, the review discusses the challenges in implementing nanocarbon materials for IoT energy storage, such as material synthesis and fabrication, device integration and optimization, scalability, safety, reliability, environmental impact, cost-effectiveness, and standardization. In addition, the review presents a forward-looking perspective on the future scope of nanocarbon materials in IoT energy storage, touching upon innovative solutions, recent advancements, ongoing research, interdisciplinary collaboration opportunities, and novel nanocarbon material discoveries. In conclusion, this review offers a comprehensive understanding of the role of nanocarbon materials in IoT energy storage, their current state in the field, and the prospects for future developments. By shedding light on the impact of nanocarbon materials on IoT device performance, efficiency, and sustainability, this review aims to serve as a valuable resource for researchers, engineers, and industry professionals working in the field of IoT energy storage and nanomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tian, H., Jiang, L., Zhang, J.: Construction of wireless sensor model for carbon neutralization and environmental protection from the perspective of energy internet of things transformation. J. Sens. 2022, 1–11 (2022)CrossRef Tian, H., Jiang, L., Zhang, J.: Construction of wireless sensor model for carbon neutralization and environmental protection from the perspective of energy internet of things transformation. J. Sens. 2022, 1–11 (2022)CrossRef
2.
go back to reference Golpîra, H., Bahramara, S.: Internet-of-things-based optimal smart city energy management considering shiftable loads and energy storage. J. Clean. Prod. 264, 121620 (2020)CrossRef Golpîra, H., Bahramara, S.: Internet-of-things-based optimal smart city energy management considering shiftable loads and energy storage. J. Clean. Prod. 264, 121620 (2020)CrossRef
3.
go back to reference Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J., Zakeri, B.: Internet of Things (IoT) and the energy sector. Energies 13(2), 494 (2020)CrossRef Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J., Zakeri, B.: Internet of Things (IoT) and the energy sector. Energies 13(2), 494 (2020)CrossRef
4.
go back to reference Jayakumar, H., Lee, K., Lee, W. S., Raha, A., Kim, Y., Raghunathan, V.: (2014) Powering the internet of things. In: Proceedings of the 2014 International Symposium on Low Power Electronics and Design, pp. 375–380 Jayakumar, H., Lee, K., Lee, W. S., Raha, A., Kim, Y., Raghunathan, V.: (2014) Powering the internet of things. In: Proceedings of the 2014 International Symposium on Low Power Electronics and Design, pp. 375–380
5.
go back to reference Kim, C., Sul, J., Moon, J.H.: Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Mater. 57, 308–315 (2023)CrossRef Kim, C., Sul, J., Moon, J.H.: Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Mater. 57, 308–315 (2023)CrossRef
6.
go back to reference Wang, Y., Liu, Y., Wang, C., Li, Z., Sheng, X., Lee, H.G., Yang, H.: Storage-less and converter-less photovoltaic energy harvesting with maximum power point tracking for internet of things. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(2), 173–186 (2015)CrossRef Wang, Y., Liu, Y., Wang, C., Li, Z., Sheng, X., Lee, H.G., Yang, H.: Storage-less and converter-less photovoltaic energy harvesting with maximum power point tracking for internet of things. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(2), 173–186 (2015)CrossRef
7.
go back to reference Wang, Z.L.: Entropy theory of distributed energy for internet of things. Nano Energy 58, 669–672 (2019)CrossRef Wang, Z.L.: Entropy theory of distributed energy for internet of things. Nano Energy 58, 669–672 (2019)CrossRef
8.
go back to reference Zeadally, S., Shaikh, F.K., Talpur, A., Sheng, Q.Z.: Design architectures for energy harvesting in the Internet of Things. Renew. Sustain. Energy Rev. 128, 109901 (2020)CrossRef Zeadally, S., Shaikh, F.K., Talpur, A., Sheng, Q.Z.: Design architectures for energy harvesting in the Internet of Things. Renew. Sustain. Energy Rev. 128, 109901 (2020)CrossRef
9.
go back to reference Kong, L., Tang, C., Peng, H.J., Huang, J.Q., Zhang, Q.: Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1(1) (2020) Kong, L., Tang, C., Peng, H.J., Huang, J.Q., Zhang, Q.: Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1(1) (2020)
10.
go back to reference Panidi, J., Georgiadou, D.G., Schoetz, T., Prodromakis, T.: Advances in organic and perovskite photovoltaics enabling a greener Internet of Things. Adv. Funct. Mater. 32(23), 2200694 (2022) Panidi, J., Georgiadou, D.G., Schoetz, T., Prodromakis, T.: Advances in organic and perovskite photovoltaics enabling a greener Internet of Things. Adv. Funct. Mater. 32(23), 2200694 (2022)
11.
go back to reference Liu, Y., Li, D., Du, B., Shu, L., Han, G.: Rethinking sustainable sensing in agricultural Internet of Things: from power supply perspective. IEEE Wirel. Commun. 29(4), 102–109 (2022)CrossRef Liu, Y., Li, D., Du, B., Shu, L., Han, G.: Rethinking sustainable sensing in agricultural Internet of Things: from power supply perspective. IEEE Wirel. Commun. 29(4), 102–109 (2022)CrossRef
12.
go back to reference Lei, J., Zhou, C., Li, X., Huang, A., Bai, H., Yuan, Z., Zhou, L.: Energy management considering energy storage and demand response for smart energy hub in Internet of Things. IEEE Access (2020) Lei, J., Zhou, C., Li, X., Huang, A., Bai, H., Yuan, Z., Zhou, L.: Energy management considering energy storage and demand response for smart energy hub in Internet of Things. IEEE Access (2020)
13.
go back to reference Lethien, C., Le Bideau, J., Brousse, T.: Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci. 12(1), 96–115 (2019)CrossRef Lethien, C., Le Bideau, J., Brousse, T.: Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci. 12(1), 96–115 (2019)CrossRef
14.
go back to reference Liu, C., Tian, B., Ding, M.: Nanocomposite materials for nano-electronic-based Internet of things sensors and energy device signaling. In: Emerging 2D materials and devices for the Internet of Things, pp. 243–290. Elsevier (2020). Liu, C., Tian, B., Ding, M.: Nanocomposite materials for nano-electronic-based Internet of things sensors and energy device signaling. In: Emerging 2D materials and devices for the Internet of Things, pp. 243–290. Elsevier (2020).
15.
go back to reference Liu, J.: The analysis of innovative design and evaluation of energy storage system based on Internet of Things. J. Supercomput. 78(2), 1624–1641 (2022)CrossRef Liu, J.: The analysis of innovative design and evaluation of energy storage system based on Internet of Things. J. Supercomput. 78(2), 1624–1641 (2022)CrossRef
16.
go back to reference Mohan, A.M.V.: Wearable energy storage devices. In: Wearable Energy Storage Devices. De Gruyter (2021) Mohan, A.M.V.: Wearable energy storage devices. In: Wearable Energy Storage Devices. De Gruyter (2021)
17.
go back to reference Pang, J., Bachmatiuk, A., Yang, F., Liu, H., Zhou, W., Rümmeli, M.H., Cuniberti, G.: Applications of carbon nanotubes in the internet of things era. Nano-Micro Lett. 13, 1–15 (2021)CrossRef Pang, J., Bachmatiuk, A., Yang, F., Liu, H., Zhou, W., Rümmeli, M.H., Cuniberti, G.: Applications of carbon nanotubes in the internet of things era. Nano-Micro Lett. 13, 1–15 (2021)CrossRef
18.
go back to reference Fan, Y.F., Yi, Z.L., Song, G., Wang, Z.F., Chen, C.J., Xie, L.J., Chen, C.M., et al.: Self-standing graphitized hybrid nanocarbon electrodes towards high-frequency supercapacitors. Carbon 185, 630–640 (2021) Fan, Y.F., Yi, Z.L., Song, G., Wang, Z.F., Chen, C.J., Xie, L.J., Chen, C.M., et al.: Self-standing graphitized hybrid nanocarbon electrodes towards high-frequency supercapacitors. Carbon 185, 630–640 (2021)
19.
go back to reference Feng, X. (ed.): Nanocarbons for advanced energy storage, vol. 1. Weinheim, Germany, Wiley-Vch (2015) Feng, X. (ed.): Nanocarbons for advanced energy storage, vol. 1. Weinheim, Germany, Wiley-Vch (2015)
20.
go back to reference Gerard, O., Numan, A., Krishnan, S., Khalid, M., Subramaniam, R., Kasi, R.: A review on the recent advances in binder-free electrodes for electrochemical energy storage application. J. Energy Storage 50, 104283 (2022)CrossRef Gerard, O., Numan, A., Krishnan, S., Khalid, M., Subramaniam, R., Kasi, R.: A review on the recent advances in binder-free electrodes for electrochemical energy storage application. J. Energy Storage 50, 104283 (2022)CrossRef
21.
go back to reference Raj, A., Steingart, D.: Power sources for the internet of things. J. Electrochem. Soc. 165(8), B3130 (2018)CrossRef Raj, A., Steingart, D.: Power sources for the internet of things. J. Electrochem. Soc. 165(8), B3130 (2018)CrossRef
22.
go back to reference Sabantina, L.: Nanocarbons-based textiles for flexible energy storage. In: Nanosensors and Nanodevices for Smart Multifunctional Textiles, pp. 163–188. Elsevier (2021) Sabantina, L.: Nanocarbons-based textiles for flexible energy storage. In: Nanosensors and Nanodevices for Smart Multifunctional Textiles, pp. 163–188. Elsevier (2021)
23.
go back to reference Su, D.S., Centi, G.: A perspective on carbon materials for future energy application. J. Energy Chem. 22(2), 151–173 (2013)CrossRef Su, D.S., Centi, G.: A perspective on carbon materials for future energy application. J. Energy Chem. 22(2), 151–173 (2013)CrossRef
24.
go back to reference Su, D.S., Schlögl, R.: Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem: Chem. Sustain. Energy Mater. 3(2), 136–168 (2010) Su, D.S., Schlögl, R.: Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem: Chem. Sustain. Energy Mater. 3(2), 136–168 (2010)
25.
go back to reference Sun, H., Yin, M., Wei, W., Li, J., Wang, H., Jin, X.: MEMS based energy harvesting for the Internet of Things: a survey. Microsyst. Technol. 24, 2853–2869 (2018)CrossRef Sun, H., Yin, M., Wei, W., Li, J., Wang, H., Jin, X.: MEMS based energy harvesting for the Internet of Things: a survey. Microsyst. Technol. 24, 2853–2869 (2018)CrossRef
26.
go back to reference Wang, H., Liang, Y., Gong, M., Li, Y., Chang, W., Mefford, T., Dai, H.: An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 3(1), 917 (2012)CrossRefPubMed Wang, H., Liang, Y., Gong, M., Li, Y., Chang, W., Mefford, T., Dai, H.: An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 3(1), 917 (2012)CrossRefPubMed
27.
go back to reference Zeng, Q., Lai, Y., Jiang, L., Liu, F., Hao, X., Wang, L., Green, M.A.: Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv. Energy Mater. 10(14), 1903930 (2020)CrossRef Zeng, Q., Lai, Y., Jiang, L., Liu, F., Hao, X., Wang, L., Green, M.A.: Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv. Energy Mater. 10(14), 1903930 (2020)CrossRef
28.
go back to reference Zhang, Q., Huang, J.Q., Qian, W.Z., Zhang, Y.Y., Wei, F.: The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8), 1237–1265 (2013)CrossRefPubMed Zhang, Q., Huang, J.Q., Qian, W.Z., Zhang, Y.Y., Wei, F.: The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8), 1237–1265 (2013)CrossRefPubMed
Metadata
Title
A Review on IoT Energy Storage with Nanocarbon Materials: Requirements, State-of-the-Art, Challenges, and Future Scope
Author
Partha Pratim Ray
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_3