Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2017

11-04-2017

A Revisited Study of the Processing Map and Optimized Workability of AZ61 Magnesium Alloy

Authors: X. Zhou, R. R. Liu, H. T. Zhou, W. X. Jiang

Published in: Journal of Materials Engineering and Performance | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hot deformation behavior of AZ61 magnesium alloy was studied by hot compression testing in the temperature range from 250 to 400 °C with strain rates from 10−3 to 1 s−1. Typical flow stress/true strain curves with the features of dynamic recrystallization (DRX) have been obtained. According to the flow stress curves, the processing maps were constructed via the dynamic material model (DMM). The maps exhibit a domain of DRX at temperatures between 330 and 370 °C and strain rates ranging from 10−3 to 10−2 s−1. The corresponding extrusion deformation was carried out in this DRX region. Gleeble 3500, optical microscopy (OM) and transmission electron microscopy (TEM) were used to characterize the microstructure evolution. The microstructure detection of this DRX region shows that the average grain size decreases with decreasing extrusion temperature. TEM observation further indicated that there are irregularly shaped subgrains with a high dislocation density, a dislocation network, the feature of dislocation pileup and an appearance of twin formation in the alloy hot-extruded using the parameters determined by our constructed processing maps.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747CrossRef J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747CrossRef
2.
go back to reference X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, Texture and Stretch Formability of AZ61 and AM60 Magnesium Alloy Sheets Processed by High-Temperature Rolling, J. Alloys Compd., 2015, 632, p 94–102CrossRef X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, Texture and Stretch Formability of AZ61 and AM60 Magnesium Alloy Sheets Processed by High-Temperature Rolling, J. Alloys Compd., 2015, 632, p 94–102CrossRef
3.
go back to reference B.R. Sunil, K.V. Ganesh, P. Pavan, G. Vadapalli, C. Swarnalatha, P. Swapna, P. Bindukumar, and G. Pradeep Kumar Reddy, Effect of Aluminum Content on Machining Characteristics of AZ31 and AZ91 Magnesium Alloys During Drilling, J. Magn. Alloys, 2016, 4, p 15–21CrossRef B.R. Sunil, K.V. Ganesh, P. Pavan, G. Vadapalli, C. Swarnalatha, P. Swapna, P. Bindukumar, and G. Pradeep Kumar Reddy, Effect of Aluminum Content on Machining Characteristics of AZ31 and AZ91 Magnesium Alloys During Drilling, J. Magn. Alloys, 2016, 4, p 15–21CrossRef
4.
go back to reference W. Jia, S. Xu, Q. Le, L. Fu, L. Ma, and Y. Tang, Modified Fields-Backofen Model for Constitutive Behavior of as-Cast AZ31B Magnesium Alloy During Hot Deformation, Mater. Des., 2016, 106, p 120–132CrossRef W. Jia, S. Xu, Q. Le, L. Fu, L. Ma, and Y. Tang, Modified Fields-Backofen Model for Constitutive Behavior of as-Cast AZ31B Magnesium Alloy During Hot Deformation, Mater. Des., 2016, 106, p 120–132CrossRef
5.
go back to reference G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, T.W. Ku, and W.J. Song, Constitutive Modeling for the Dynamic Recrystallization Evolution of AZ80 Magnesium Alloy Based on Stress-Strain Data, Mater. Sci. Eng. A, 2011, 528, p 8051–8059CrossRef G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, T.W. Ku, and W.J. Song, Constitutive Modeling for the Dynamic Recrystallization Evolution of AZ80 Magnesium Alloy Based on Stress-Strain Data, Mater. Sci. Eng. A, 2011, 528, p 8051–8059CrossRef
6.
go back to reference S. Mironov, T. Onuma, Y.S. Sato, and H. Kokawa, Microstructure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy, Acta Mater., 2015, 100, p 301–312CrossRef S. Mironov, T. Onuma, Y.S. Sato, and H. Kokawa, Microstructure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy, Acta Mater., 2015, 100, p 301–312CrossRef
7.
go back to reference H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, and Q.D. Wang, Hot Workability Characteristics of Magnesium Alloy AZ80-A Study Using Processing Map, Mater. Sci. Eng. A, 2010, 527, p 2022–2026CrossRef H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, and Q.D. Wang, Hot Workability Characteristics of Magnesium Alloy AZ80-A Study Using Processing Map, Mater. Sci. Eng. A, 2010, 527, p 2022–2026CrossRef
8.
go back to reference L.C. Tsao, Y.T. Huang, and K.H. Fan, Flow Stress Behavior of AZ61 Magnesium Alloy During Hot Compression Deformation, Mater. Des., 2014, 53, p 865–869CrossRef L.C. Tsao, Y.T. Huang, and K.H. Fan, Flow Stress Behavior of AZ61 Magnesium Alloy During Hot Compression Deformation, Mater. Des., 2014, 53, p 865–869CrossRef
9.
go back to reference M.G. Jiang, H. Yan, L. Gao, and R.S. Chen, Microstructural Evolution of Mg-7Al-2Sn Mg Alloy During Multi-directional Impact Forging, J. Magn. Alloys, 2015, 3, p 180–187CrossRef M.G. Jiang, H. Yan, L. Gao, and R.S. Chen, Microstructural Evolution of Mg-7Al-2Sn Mg Alloy During Multi-directional Impact Forging, J. Magn. Alloys, 2015, 3, p 180–187CrossRef
10.
go back to reference H. Zhou, X. Zeng, L. Liu, Y. Zhang, Y. Zhu, and W. Ding, Effect of Cerium on Microstructures and Mechanical Properties of AZ61 Wrought Magnesium Alloy, J. Mater. Sci., 2004, 3, p 7061–7066CrossRef H. Zhou, X. Zeng, L. Liu, Y. Zhang, Y. Zhu, and W. Ding, Effect of Cerium on Microstructures and Mechanical Properties of AZ61 Wrought Magnesium Alloy, J. Mater. Sci., 2004, 3, p 7061–7066CrossRef
11.
go back to reference H.T. Zhou, X.Q. Zeng, L.L. Liu, J. Dong, Q.D. Wang, W.J. Ding, and Y.P. Zhu, Microstructural Evolution of AZ61 Magnesium Alloy During Hot Deformation, Mater. Sci. Technol., 2004, 20, p 1397–1402CrossRef H.T. Zhou, X.Q. Zeng, L.L. Liu, J. Dong, Q.D. Wang, W.J. Ding, and Y.P. Zhu, Microstructural Evolution of AZ61 Magnesium Alloy During Hot Deformation, Mater. Sci. Technol., 2004, 20, p 1397–1402CrossRef
12.
go back to reference H.T. Zhou, C.M. Liu, and M.A. Chen, Constitutive Model Development and Hot Extrusion Simulation for AZ61 Magnesium Alloy, Mater. Sci. Technol., 2006, 22, p 597–603CrossRef H.T. Zhou, C.M. Liu, and M.A. Chen, Constitutive Model Development and Hot Extrusion Simulation for AZ61 Magnesium Alloy, Mater. Sci. Technol., 2006, 22, p 597–603CrossRef
13.
go back to reference C. Roucoules, S. Yue, and J.J. Jonas, Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels, Metall. Mater. Trans. A, 1995, 26, p 181–190CrossRef C. Roucoules, S. Yue, and J.J. Jonas, Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels, Metall. Mater. Trans. A, 1995, 26, p 181–190CrossRef
14.
go back to reference T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207CrossRef
15.
go back to reference M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries, Acta Mater., 1999, 47, p 2047–2057CrossRef M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries, Acta Mater., 1999, 47, p 2047–2057CrossRef
16.
go back to reference H. Mirzadeh, Constitutive Analysis of Mg-Al-Zn Magnesium Alloys During Hot Deformation, Mech. Mater., 2014, 77(77), p 80–85CrossRef H. Mirzadeh, Constitutive Analysis of Mg-Al-Zn Magnesium Alloys During Hot Deformation, Mech. Mater., 2014, 77(77), p 80–85CrossRef
17.
go back to reference H. Mirzadeh, Constitutive Behaviors of Magnesium and Mg-Zn-Zr Alloy During Hot Deformation, Mater. Chem. Phys., 2015, 152, p 123–126CrossRef H. Mirzadeh, Constitutive Behaviors of Magnesium and Mg-Zn-Zr Alloy During Hot Deformation, Mater. Chem. Phys., 2015, 152, p 123–126CrossRef
18.
go back to reference H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi, Rate Controlling Mechanisms During Hot Deformation of Mg-3Gd-1Zn Magnesium Alloy: Dislocation Glide and Climb, Dynamic Recrystallization, and Mechanical Twinning, Mater. Des., 2015, 68, p 228–231CrossRef H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi, Rate Controlling Mechanisms During Hot Deformation of Mg-3Gd-1Zn Magnesium Alloy: Dislocation Glide and Climb, Dynamic Recrystallization, and Mechanical Twinning, Mater. Des., 2015, 68, p 228–231CrossRef
19.
go back to reference T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 1973, 4(3), p 765–775 T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 1973, 4(3), p 765–775
20.
go back to reference Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208, p 29–34CrossRef Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208, p 29–34CrossRef
21.
go back to reference X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, Improvement of Stretch Formability of Mg-3Al-1Zn Alloy Sheet by High Temperature Rolling at Finishing Pass, J. Alloys Compd., 2011, 509, p 7579–7584CrossRef X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, Improvement of Stretch Formability of Mg-3Al-1Zn Alloy Sheet by High Temperature Rolling at Finishing Pass, J. Alloys Compd., 2011, 509, p 7579–7584CrossRef
22.
go back to reference A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng., A, 2010, 527, p 5467–5473CrossRef A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng., A, 2010, 527, p 5467–5473CrossRef
23.
go back to reference Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti6242, Metall. Trans. A, 1984, 15, p 1883–1892CrossRef Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti6242, Metall. Trans. A, 1984, 15, p 1883–1892CrossRef
24.
go back to reference Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258CrossRef Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258CrossRef
25.
go back to reference N. Srinivasan, Y.V.R.K. Prasad, and P. Rama, Rao, Hot Deformation Behaviour of Mg-3Al Alloy-A Study Using Processing Map, Mater. Sci. Eng. A, 2008, 476, p 146–156CrossRef N. Srinivasan, Y.V.R.K. Prasad, and P. Rama, Rao, Hot Deformation Behaviour of Mg-3Al Alloy-A Study Using Processing Map, Mater. Sci. Eng. A, 2008, 476, p 146–156CrossRef
26.
go back to reference W.P. Peng, P.J. Li, P. Zeng, and L.P. Lei, Hot Deformation Behavior and Microstructure Evolution of Twin-Roll-Cast Mg-2.9Al-0.9Zn Alloy: A Study with Processing Map, Mater. Sci. Eng. A, 2008, 494, p 173–178CrossRef W.P. Peng, P.J. Li, P. Zeng, and L.P. Lei, Hot Deformation Behavior and Microstructure Evolution of Twin-Roll-Cast Mg-2.9Al-0.9Zn Alloy: A Study with Processing Map, Mater. Sci. Eng. A, 2008, 494, p 173–178CrossRef
27.
go back to reference Y.V.R.K. Prasad and K.P. Rao, Processing Maps for Hot Deformation of Rolled AZ31 Magnesium Alloy Plate: Anisotropy of Hot Workability, Mater. Sci. Eng., A, 2008, 487, p 316–327CrossRef Y.V.R.K. Prasad and K.P. Rao, Processing Maps for Hot Deformation of Rolled AZ31 Magnesium Alloy Plate: Anisotropy of Hot Workability, Mater. Sci. Eng., A, 2008, 487, p 316–327CrossRef
28.
go back to reference F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot Workability Analysis of Extruded AZ Magnesium Alloys with Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 735–744CrossRef F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot Workability Analysis of Extruded AZ Magnesium Alloys with Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 735–744CrossRef
29.
go back to reference Y. Xu, L. Hu, T. Deng, and L. Ye, Hot Deformation Behavior and Processing Map of As-Cast AZ61 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 559, p 528–533CrossRef Y. Xu, L. Hu, T. Deng, and L. Ye, Hot Deformation Behavior and Processing Map of As-Cast AZ61 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 559, p 528–533CrossRef
30.
go back to reference H.Y. Wu, C.T. Wu, J.C. Yang, and M.J. Lin, Hot Workability Analysis of AZ61 Mg Alloys with Processing Maps, Mater. Sci. Eng. A, 2014, 607, p 261–268CrossRef H.Y. Wu, C.T. Wu, J.C. Yang, and M.J. Lin, Hot Workability Analysis of AZ61 Mg Alloys with Processing Maps, Mater. Sci. Eng. A, 2014, 607, p 261–268CrossRef
31.
go back to reference M. Shahzad and L. Wagner, Influence of Extrusion Parameters on Microstructure and Texture Developments, and Their Effects on Mechanical Properties of the Magnesium Alloy AZ80, Mater. Sci. Eng. A, 2009, 506, p 141–147CrossRef M. Shahzad and L. Wagner, Influence of Extrusion Parameters on Microstructure and Texture Developments, and Their Effects on Mechanical Properties of the Magnesium Alloy AZ80, Mater. Sci. Eng. A, 2009, 506, p 141–147CrossRef
32.
go back to reference M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva, Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 2002, 337, p 121–133CrossRef M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva, Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 2002, 337, p 121–133CrossRef
33.
go back to reference A. Seeger and W.G. Mayer, Moderne Probleme der Metallphysik, Phys. Today, 1965, 18, p 54CrossRef A. Seeger and W.G. Mayer, Moderne Probleme der Metallphysik, Phys. Today, 1965, 18, p 54CrossRef
34.
go back to reference H.J. McQueen and O.C. Celliers, Application of Hot Workability Studies to Extrusion Processing. Part III: Physical and Mechanical Metallurgy of Al-Mg-Si and Al-Zn-Mg Alloys5, Can. Metall. Q., 1997, 36, p 73–86 H.J. McQueen and O.C. Celliers, Application of Hot Workability Studies to Extrusion Processing. Part III: Physical and Mechanical Metallurgy of Al-Mg-Si and Al-Zn-Mg Alloys5, Can. Metall. Q., 1997, 36, p 73–86
Metadata
Title
A Revisited Study of the Processing Map and Optimized Workability of AZ61 Magnesium Alloy
Authors
X. Zhou
R. R. Liu
H. T. Zhou
W. X. Jiang
Publication date
11-04-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2670-2

Other articles of this Issue 5/2017

Journal of Materials Engineering and Performance 5/2017 Go to the issue

Premium Partners