Skip to main content
Top
Published in: Numerical Algorithms 1/2021

25-02-2020 | Original Paper

A Riemannian derivative-free Polak–Ribiére–Polyak method for tangent vector field

Authors: Teng-Teng Yao, Zhi Zhao, Zheng-Jian Bai, Xiao-Qing Jin

Published in: Numerical Algorithms | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper is concerned with the problem of finding a zero of a tangent vector field on a Riemannian manifold. We first reformulate the problem as an equivalent Riemannian optimization problem. Then, we propose a Riemannian derivative-free Polak–Ribiére–Polyak method for solving the Riemannian optimization problem, where a non-monotone line search is employed. The global convergence of the proposed method is established under some mild assumptions. To further improve the efficiency, we also provide a hybrid method, which combines the proposed geometric method with the Riemannian Newton method. Finally, some numerical experiments are reported to illustrate the efficiency of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)MATHCrossRef Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)MATHCrossRef
2.
go back to reference Absil, P.-A., Ishteva, M., Lathauwer, L., van Huffel, S.: A geometric Newton method for Oja’s vector field. Neural Comput. 21, 1415–1433 (2009)MathSciNetMATHCrossRef Absil, P.-A., Ishteva, M., Lathauwer, L., van Huffel, S.: A geometric Newton method for Oja’s vector field. Neural Comput. 21, 1415–1433 (2009)MathSciNetMATHCrossRef
3.
go back to reference Adler, R.L., Dedieu, J.-P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)MathSciNetMATHCrossRef Adler, R.L., Dedieu, J.-P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)MathSciNetMATHCrossRef
4.
go back to reference Bento, G.C., Cruz Neto, J.X.: Finite termination of the proximal point method for convex functions on Hadamard manifolds. Optimization 63, 1281–1288 (2014)MathSciNetMATHCrossRef Bento, G.C., Cruz Neto, J.X.: Finite termination of the proximal point method for convex functions on Hadamard manifolds. Optimization 63, 1281–1288 (2014)MathSciNetMATHCrossRef
5.
go back to reference Bortoloti, M.A.A., Fernandes, T.A., Ferreira, O.P., Yuan, J.Y.: Damped Newton’s Method on Riemannian Manifolds. arXiv:1803.05126 (2018) Bortoloti, M.A.A., Fernandes, T.A., Ferreira, O.P., Yuan, J.Y.: Damped Newton’s Method on Riemannian Manifolds. arXiv:1803.​05126 (2018)
6.
go back to reference Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)MATH Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)MATH
8.
go back to reference Chen, H., Dai, X., Gong, X., He, L., Zhou, A.: Adaptive finite element approximations for Kohn-Sham models. Multiscale Model. Simul. 12, 1828–1869 (2014)MathSciNetMATHCrossRef Chen, H., Dai, X., Gong, X., He, L., Zhou, A.: Adaptive finite element approximations for Kohn-Sham models. Multiscale Model. Simul. 12, 1828–1869 (2014)MathSciNetMATHCrossRef
9.
go back to reference Cheng, W., Li, D.: A derivative-free non-monotone line search and its applications to the spectral residual method. IMA J. Numer. Anal. 29, 814–825 (2009)MathSciNetMATHCrossRef Cheng, W., Li, D.: A derivative-free non-monotone line search and its applications to the spectral residual method. IMA J. Numer. Anal. 29, 814–825 (2009)MathSciNetMATHCrossRef
10.
go back to reference Cheng, W., Xiao, Y., Hu, Q.J.: A family of derivative-free conjugate gradient methods for large-scale nonlinear systems of equations. J. Comput. Appl. Math. 224, 11–19 (2009)MathSciNetMATHCrossRef Cheng, W., Xiao, Y., Hu, Q.J.: A family of derivative-free conjugate gradient methods for large-scale nonlinear systems of equations. J. Comput. Appl. Math. 224, 11–19 (2009)MathSciNetMATHCrossRef
11.
go back to reference Cruz, W.L., Martínez, J., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comp. 75, 1429–448 (2006)MathSciNetMATHCrossRef Cruz, W.L., Martínez, J., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comp. 75, 1429–448 (2006)MathSciNetMATHCrossRef
12.
13.
go back to reference Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Perez, L.R.: Monotone point-to-set vector fields. Balkan J. Geom. Appl. 5, 69–79 (2000)MathSciNetMATH Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Perez, L.R.: Monotone point-to-set vector fields. Balkan J. Geom. Appl. 5, 69–79 (2000)MathSciNetMATH
14.
go back to reference Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta. Math. Hung. 94, 307–320 (2002)MathSciNetMATHCrossRef Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta. Math. Hung. 94, 307–320 (2002)MathSciNetMATHCrossRef
15.
go back to reference Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R., Németh, S.Z.: Convex and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35, 53–69 (2006)MathSciNetMATHCrossRef Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R., Németh, S.Z.: Convex and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35, 53–69 (2006)MathSciNetMATHCrossRef
16.
go back to reference Dedieu, J.P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal. 23, 395–419 (2003)MathSciNetMATHCrossRef Dedieu, J.P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal. 23, 395–419 (2003)MathSciNetMATHCrossRef
17.
go back to reference Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)MathSciNetMATHCrossRef Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)MathSciNetMATHCrossRef
18.
go back to reference Fang, X.W., Ni, Q.: A new derivative-free conjugate gradient method for large-scale nonlinear systems of equations. Bull. Aust. Math. Soc. 95, 500–511 (2017)MathSciNetMATHCrossRef Fang, X.W., Ni, Q.: A new derivative-free conjugate gradient method for large-scale nonlinear systems of equations. Bull. Aust. Math. Soc. 95, 500–511 (2017)MathSciNetMATHCrossRef
20.
go back to reference Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31, 133–151 (2005)MathSciNetMATHCrossRef Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31, 133–151 (2005)MathSciNetMATHCrossRef
21.
go back to reference Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore and London (1996)MATH Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore and London (1996)MATH
22.
23.
go back to reference Jeuris, B.: Riemannian Optimization for Averaging Positive Definite Matrices, Ph.D. Dissertation, Department of Computer Science, KU Leuven (2015) Jeuris, B.: Riemannian Optimization for Averaging Positive Definite Matrices, Ph.D. Dissertation, Department of Computer Science, KU Leuven (2015)
24.
go back to reference Li, C., López, G., Martín-Márquez, M.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)MathSciNetMATHCrossRef Li, C., López, G., Martín-Márquez, M.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)MathSciNetMATHCrossRef
25.
go back to reference Li, C., Wang, J.H.: Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. China Ser. A. 48, 1465–1478 (2005)MathSciNetMATHCrossRef Li, C., Wang, J.H.: Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. China Ser. A. 48, 1465–1478 (2005)MathSciNetMATHCrossRef
26.
go back to reference Li, M.: A derivative-free PRP method for solving large-scale nonlinear systems of equations and its global convergence. Optim. Methods Softw. 29, 503–514 (2014)MathSciNetMATHCrossRef Li, M.: A derivative-free PRP method for solving large-scale nonlinear systems of equations and its global convergence. Optim. Methods Softw. 29, 503–514 (2014)MathSciNetMATHCrossRef
27.
go back to reference Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)MATHCrossRef Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)MATHCrossRef
28.
29.
go back to reference Ngo, T., Bellalij, M., Saad, Y.: The trace ratio optimization problem for dimensionality reduction. SIAM J. Matrix Anal. Appl. 31, 2950–2971 (2010)MathSciNetMATHCrossRef Ngo, T., Bellalij, M., Saad, Y.: The trace ratio optimization problem for dimensionality reduction. SIAM J. Matrix Anal. Appl. 31, 2950–2971 (2010)MathSciNetMATHCrossRef
31.
go back to reference Oja, E.: Neural networks, principal components, and subspaces. Neural Syst. 1, 61–68 (1989)CrossRef Oja, E.: Neural networks, principal components, and subspaces. Neural Syst. 1, 61–68 (1989)CrossRef
32.
go back to reference Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)MathSciNetMATHCrossRef Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)MathSciNetMATHCrossRef
33.
go back to reference Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52, 3–54 (2010)MathSciNetMATHCrossRef Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52, 3–54 (2010)MathSciNetMATHCrossRef
34.
35.
go back to reference Tang, G.J., Huang, N.J.: An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds. Oper. Res. Lett. 41, 586–591 (2013)MathSciNetMATHCrossRef Tang, G.J., Huang, N.J.: An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds. Oper. Res. Lett. 41, 586–591 (2013)MathSciNetMATHCrossRef
36.
go back to reference Wang, J.H., Li, C., Lopez, G., Yao, J.C.: Convergence analysis of inexact proximal point algorithms on Hadamard manifolds. J. Global Optim. 61, 553–573 (2015)MathSciNetMATHCrossRef Wang, J.H., Li, C., Lopez, G., Yao, J.C.: Convergence analysis of inexact proximal point algorithms on Hadamard manifolds. J. Global Optim. 61, 553–573 (2015)MathSciNetMATHCrossRef
37.
go back to reference Wang, J.H., Li, C., Lopez, G., Yao, J.C.: Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination. SIAM J. Optim. 26, 2696–2729 (2016)MathSciNetMATHCrossRef Wang, J.H., Li, C., Lopez, G., Yao, J.C.: Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination. SIAM J. Optim. 26, 2696–2729 (2016)MathSciNetMATHCrossRef
38.
go back to reference Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive operators on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)MathSciNetMATHCrossRef Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive operators on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)MathSciNetMATHCrossRef
39.
go back to reference Yao, T.T., Bai, Z.J., Zhao, Z., Ching, W.K.: A Riemannian Fletcher–Reeves conjugate gradient method for doubly stochastic inverse eigenvalue problems. SIAM J. Matrix Anal. Appl. 37, 215–234 (2016)MathSciNetMATHCrossRef Yao, T.T., Bai, Z.J., Zhao, Z., Ching, W.K.: A Riemannian Fletcher–Reeves conjugate gradient method for doubly stochastic inverse eigenvalue problems. SIAM J. Matrix Anal. Appl. 37, 215–234 (2016)MathSciNetMATHCrossRef
41.
go back to reference Yu, G.H.: A derivative-free method for solving large-scale nonlinear systems of equations. J. Ind. Manag. Optim. 6, 149–160 (2010)MathSciNetMATH Yu, G.H.: A derivative-free method for solving large-scale nonlinear systems of equations. J. Ind. Manag. Optim. 6, 149–160 (2010)MathSciNetMATH
42.
go back to reference Yu, G.H.: Nonmonotone spectral gradient-type methods for large-scale unconstrained optimization and nonlinear systems of equations. Pac. J. Optim. 7, 387–404 (2011)MathSciNetMATH Yu, G.H.: Nonmonotone spectral gradient-type methods for large-scale unconstrained optimization and nonlinear systems of equations. Pac. J. Optim. 7, 387–404 (2011)MathSciNetMATH
43.
go back to reference Zhang, L.H., Li, R.C.: Maximization of the sum of the trace ratio on the Stiefel manifold, I: theory. Sci. China Math. 57, 2495–2508 (2014)MathSciNetMATHCrossRef Zhang, L.H., Li, R.C.: Maximization of the sum of the trace ratio on the Stiefel manifold, I: theory. Sci. China Math. 57, 2495–2508 (2014)MathSciNetMATHCrossRef
44.
go back to reference Zhang, L.H., Li, R.C.: Maximization of the sum of the trace ratio on the Stiefel manifold, II: computation. Sci. China Math. 58, 1549–1566 (2015)MathSciNetMATHCrossRef Zhang, L.H., Li, R.C.: Maximization of the sum of the trace ratio on the Stiefel manifold, II: computation. Sci. China Math. 58, 1549–1566 (2015)MathSciNetMATHCrossRef
45.
go back to reference Zhao, Z., Bai, Z.J., Jin, X.Q.: A Riemannian Newton algorithm for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 752–774 (2015)MathSciNetMATHCrossRef Zhao, Z., Bai, Z.J., Jin, X.Q.: A Riemannian Newton algorithm for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 752–774 (2015)MathSciNetMATHCrossRef
46.
go back to reference Zhao, Z., Jin, X.Q., Bai, Z.J.: A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems. SIAM J. Numer. Anal. 54, 2015–2035 (2016)MathSciNetMATHCrossRef Zhao, Z., Jin, X.Q., Bai, Z.J.: A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems. SIAM J. Numer. Anal. 54, 2015–2035 (2016)MathSciNetMATHCrossRef
47.
Metadata
Title
A Riemannian derivative-free Polak–Ribiére–Polyak method for tangent vector field
Authors
Teng-Teng Yao
Zhi Zhao
Zheng-Jian Bai
Xiao-Qing Jin
Publication date
25-02-2020
Publisher
Springer US
Published in
Numerical Algorithms / Issue 1/2021
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00891-z

Other articles of this Issue 1/2021

Numerical Algorithms 1/2021 Go to the issue

Premium Partner