Skip to main content
Top

2018 | OriginalPaper | Chapter

A Robot Self-learning Grasping Control Method Based on Gaussian Process and Bayesian Algorithm

Authors : Yong Tao, Hui Liu, Xianling Deng, Youdong Chen, Hegen Xiong, Zengliang Fang, Xianwu Xie, Xi Xu

Published in: Transactions on Intelligent Welding Manufacturing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A robot self-learning grasping control method combining Gaussian process and Bayesian algorithm was proposed. The grasping gesture and parameters of the robot end-effector were adjusted according to the position and pose changes of target location to realize accurate grasping of the target. Firstly, a robot self-adaptive grasping method based on Gaussian process was proposed for grasping training in order to realize modeling and matching of position and pose information of target object and robot joint variables. The trained Gaussian process model is combined with Bayesian algorithm. The model was taken as priori knowledge and the semi-supervised self-learning was implemented in new grasping region so that posterior Gaussian process model was generated. This method omits the complex visual calibration process and inverse kinematics solves only with a small group of samples. Besides, when the environment of grasping changes, the previous learning experience can be used to perform self-learning, and adapt to the grasping task in the new environment, which reduces the workload of operators. The effectiveness of the robot self-learning grasping control method based on Gaussian process and Bayesian algorithm was verified through simulation and grasping experiment of UR3.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kroemer OB, Detry R, Piater J et al (2010) Combining active learning and reactive control for robot grasping. Robot Auton Syst 58(9):1105–1116CrossRef Kroemer OB, Detry R, Piater J et al (2010) Combining active learning and reactive control for robot grasping. Robot Auton Syst 58(9):1105–1116CrossRef
2.
go back to reference Lenz I, Lee H, Saxena A (2013) Deep learning for detecting robotic grasps. Int J Robot Res 34(4–5):705–724 Lenz I, Lee H, Saxena A (2013) Deep learning for detecting robotic grasps. Int J Robot Res 34(4–5):705–724
3.
go back to reference Manti M, Hassan T, Passetti G et al (2015) A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot 2(3):107–116CrossRef Manti M, Hassan T, Passetti G et al (2015) A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot 2(3):107–116CrossRef
4.
go back to reference Levine S, Finn C, Darrell T et al (2016) End-to-end training of deep visuomotor policies. J Mach Learn Res 17(39):1–40MathSciNetMATH Levine S, Finn C, Darrell T et al (2016) End-to-end training of deep visuomotor policies. J Mach Learn Res 17(39):1–40MathSciNetMATH
5.
go back to reference Zeng A et al (2017) Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, Singapore, pp 1386–1383 Zeng A et al (2017) Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, Singapore, pp 1386–1383
6.
go back to reference Garcia-Sillas D et al (2016) Learning from demonstration with Gaussian processes. In: IEEE conference on mechatronics, adaptive and intelligent systems, IEEE, Hermosillo, pp 1–6 Garcia-Sillas D et al (2016) Learning from demonstration with Gaussian processes. In: IEEE conference on mechatronics, adaptive and intelligent systems, IEEE, Hermosillo, pp 1–6
7.
go back to reference Shimojo M, Namiki A, Ishikawa M et al (2004) A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens J 4(5):589–596CrossRef Shimojo M, Namiki A, Ishikawa M et al (2004) A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens J 4(5):589–596CrossRef
8.
go back to reference Bekiroglu Y, Laaksonen J, Jorgensen JA et al (2011) Assessing grasp stability based on learning and haptic data. IEEE Trans Rob 27(3):616–629CrossRef Bekiroglu Y, Laaksonen J, Jorgensen JA et al (2011) Assessing grasp stability based on learning and haptic data. IEEE Trans Rob 27(3):616–629CrossRef
9.
go back to reference Dang H, Allen PK (2014) Stable grasping under pose uncertainty using tactile feedback. Auton Robots 36(4):309–330CrossRef Dang H, Allen PK (2014) Stable grasping under pose uncertainty using tactile feedback. Auton Robots 36(4):309–330CrossRef
10.
go back to reference Chebotar Y et al (2016) Self-supervised regrasping using spatio-temporal tactile features and reinforcement learning. In: IEEE/RSJ international conference on intelligent robots and systems, IEEE, Daejeon, pp 1960–1966 Chebotar Y et al (2016) Self-supervised regrasping using spatio-temporal tactile features and reinforcement learning. In: IEEE/RSJ international conference on intelligent robots and systems, IEEE, Daejeon, pp 1960–1966
11.
go back to reference Haschke R et al (2005) Task-oriented quality measures for dextrous grasping. IEEE international symposium on computational intelligence in robotics and automation. IEEE, Espoo, pp 689–694 Haschke R et al (2005) Task-oriented quality measures for dextrous grasping. IEEE international symposium on computational intelligence in robotics and automation. IEEE, Espoo, pp 689–694
12.
go back to reference Roa MA, Suárez R (2015) Grasp quality measures: review and performance. Auton Robots 38(1):65–88CrossRef Roa MA, Suárez R (2015) Grasp quality measures: review and performance. Auton Robots 38(1):65–88CrossRef
13.
go back to reference Miller AT et al (2003) Automatic grasp planning using shape primitives. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, IEEE, pp 1824–1829 Miller AT et al (2003) Automatic grasp planning using shape primitives. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, IEEE, pp 1824–1829
14.
go back to reference Ciocarlie MT, Allen PK (2009) Hand posture subspaces for dexterous robotic grasping. Int J Robot Res 28(7):851–867CrossRef Ciocarlie MT, Allen PK (2009) Hand posture subspaces for dexterous robotic grasping. Int J Robot Res 28(7):851–867CrossRef
15.
go back to reference Li Y, Saut J, Pettré J et al (2015) Fast grasp planning using cord geometry. IEEE Trans Rob 31(6):1393–1403CrossRef Li Y, Saut J, Pettré J et al (2015) Fast grasp planning using cord geometry. IEEE Trans Rob 31(6):1393–1403CrossRef
16.
go back to reference Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334CrossRef Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334CrossRef
17.
go back to reference Wang Y, Liu CJ, Ren YJ et al (2009) Global calibration of visual inspection system based on universal robots. Opt Precis Eng 17(12):3028–3033 Wang Y, Liu CJ, Ren YJ et al (2009) Global calibration of visual inspection system based on universal robots. Opt Precis Eng 17(12):3028–3033
18.
go back to reference Tsai RY, Lenz RK (1989) A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans Robot Autom 5(3):345–358CrossRef Tsai RY, Lenz RK (1989) A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans Robot Autom 5(3):345–358CrossRef
19.
go back to reference Levine S et al (2016) Learning hand-eye coordination for robotic grasping with largescale data collection. International symposium on experimental robotics. Springer, Berlin, pp 173–184 Levine S et al (2016) Learning hand-eye coordination for robotic grasping with largescale data collection. International symposium on experimental robotics. Springer, Berlin, pp 173–184
20.
go back to reference Pinto L et al (2016) Supersizing self-supervision: learning to grasp from 50 k tries and 700 robot hours. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, Stockholm, pp 3406–3413 Pinto L et al (2016) Supersizing self-supervision: learning to grasp from 50 k tries and 700 robot hours. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, Stockholm, pp 3406–3413
21.
go back to reference Finn C et al (2017) Deep visual foresight for planning robot motion. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, Singapore, pp 2786–2793 Finn C et al (2017) Deep visual foresight for planning robot motion. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, Singapore, pp 2786–2793
22.
go back to reference Hutchinson S, Hager GD, Corke PI (1996) A tutorial on visual servo control. IEEE Trans Robot Autom 12(5):651–670CrossRef Hutchinson S, Hager GD, Corke PI (1996) A tutorial on visual servo control. IEEE Trans Robot Autom 12(5):651–670CrossRef
23.
go back to reference Chaumette F, Hutchinson S (2006) Visual servo control. I. basic approaches. IEEE Robot Autom Mag 13(4):82–90CrossRef Chaumette F, Hutchinson S (2006) Visual servo control. I. basic approaches. IEEE Robot Autom Mag 13(4):82–90CrossRef
24.
go back to reference Siradjuddin I et al (2012) A position based visual tracking system for a 7 DOF robot manipulator using a kinect camera. The 2012 international joint conference on neural networks. IEEE, Brisbane, pp 1–7 Siradjuddin I et al (2012) A position based visual tracking system for a 7 DOF robot manipulator using a kinect camera. The 2012 international joint conference on neural networks. IEEE, Brisbane, pp 1–7
25.
go back to reference Thomas J et al (2014) Toward image based visual servoing for aerial grasping and perching. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, Hong Kong, pp 2113–2118 Thomas J et al (2014) Toward image based visual servoing for aerial grasping and perching. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, Hong Kong, pp 2113–2118
26.
go back to reference Wang Y, Lang H, Silva CW (2010) A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE/ASME Trans Mechatron 15(5):757–769CrossRef Wang Y, Lang H, Silva CW (2010) A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE/ASME Trans Mechatron 15(5):757–769CrossRef
27.
go back to reference Lin Y et al (2014) Grasp planning based on strategy extracted from demonstration. IEEE/RSJ international conference on intelligent robots and systems. IEEE, Chicago, pp 4458–4463 Lin Y et al (2014) Grasp planning based on strategy extracted from demonstration. IEEE/RSJ international conference on intelligent robots and systems. IEEE, Chicago, pp 4458–4463
28.
go back to reference Sauser EL, Argall BD, Metta G et al (2012) Iterative learning of grasp adaptation through human corrections. Robot Auton Syst 60(1):55–71CrossRef Sauser EL, Argall BD, Metta G et al (2012) Iterative learning of grasp adaptation through human corrections. Robot Auton Syst 60(1):55–71CrossRef
29.
go back to reference Faria DR, Martins R, Lobo J et al (2012) Extracting data from human manipulation of objects towards improving autonomous robotic grasping. Robot Auton Syst 60(3):396–410CrossRef Faria DR, Martins R, Lobo J et al (2012) Extracting data from human manipulation of objects towards improving autonomous robotic grasping. Robot Auton Syst 60(3):396–410CrossRef
30.
go back to reference Rasmussen CE, Williams CK (2004) Gaussian processes in machine learning. Lect Notes Comput Sci 3176:63–71CrossRef Rasmussen CE, Williams CK (2004) Gaussian processes in machine learning. Lect Notes Comput Sci 3176:63–71CrossRef
31.
go back to reference Ghadirzadeh A et al (2016) A sensorimotor reinforcement learning framework for physical human-robot interaction. IEEE/RSJ international conference on intelligent robots and systems. IEEE, Daejeon, pp 2682–2688 Ghadirzadeh A et al (2016) A sensorimotor reinforcement learning framework for physical human-robot interaction. IEEE/RSJ international conference on intelligent robots and systems. IEEE, Daejeon, pp 2682–2688
32.
go back to reference Ghadirzadeh A et al (2014) Learning visual forward models to compensate for self-induced image motion. The 23rd IEEE international symposium on robot and human interactive communication. IEEE, Edinburgh, pp 1110–1115CrossRef Ghadirzadeh A et al (2014) Learning visual forward models to compensate for self-induced image motion. The 23rd IEEE international symposium on robot and human interactive communication. IEEE, Edinburgh, pp 1110–1115CrossRef
Metadata
Title
A Robot Self-learning Grasping Control Method Based on Gaussian Process and Bayesian Algorithm
Authors
Yong Tao
Hui Liu
Xianling Deng
Youdong Chen
Hegen Xiong
Zengliang Fang
Xianwu Xie
Xi Xu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8330-3_5