Skip to main content
Top

06-05-2024

A Robust Rating Aggregation Method based on Rater Group Trustworthiness for Collusive Disturbance

Authors: Huan Zhu, Yu Xiao, Dongmei Chen, Jun Wu

Published in: Information Systems Frontiers

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rating can be obligatory for many tasks, such as film recommendation, hotel rating, and product evaluation. Aggregating ratings given by numerous raters is a necessary and effective way to obtain comprehensive evaluation of the objects. While the awareness of potential distortion for some of the targeted objects, has attracted substantial attention of researchers and motivated the designing of the robust rating aggregation method to overcome the impact of disturbance from ignorant/malicious raters in practice. In this paper, we focus on rating aggregation with collusive disturbance, which is hard to be eliminated and invalidate traditional rating aggregation methods. Therefore, we will introduce the idea of detecting collusive group into rating aggregation to develop a new method, called robust rating aggregation method based on rater group trustworthiness (RGT), which obtains four main modules: Graph Mapping, Rater Group Detection, Group Trustworthiness Calculating, and Rating Aggregation. Experimental results and analyses demonstrate that our method is more robust to collusive disturbance than other traditional methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alqwadri, A., Azzeh, M., & Almasalha, F. (2021). Application of machine learning for online reputation systems. International Journal of Automation and Computing., 18(3), 492–502.CrossRef Alqwadri, A., Azzeh, M., & Almasalha, F. (2021). Application of machine learning for online reputation systems. International Journal of Automation and Computing., 18(3), 492–502.CrossRef
go back to reference Arrow, K. J. (1952). Social choice and individual values. Yale University Press. Arrow, K. J. (1952). Social choice and individual values. Yale University Press.
go back to reference Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science., 286(5439), 509–512.CrossRef Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science., 286(5439), 509–512.CrossRef
go back to reference Noekhah, S., Salim, N., Zakaria, N.H.: Opinion spam detection: Using multi-iterative graph-based model. Information Processing & Management. 57(1), 102140 (2020) Noekhah, S., Salim, N., Zakaria, N.H.: Opinion spam detection: Using multi-iterative graph-based model. Information Processing & Management. 57(1), 102140 (2020)
go back to reference Chao, X., Kou, G., Peng, Y., Herrera-Viedma, E., & Herrera, F. (2021). An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement. Information Sciences., 575, 499–527.CrossRef Chao, X., Kou, G., Peng, Y., Herrera-Viedma, E., & Herrera, F. (2021). An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement. Information Sciences., 575, 499–527.CrossRef
go back to reference Zhang, Y., Chen, X., Gao, L., Dong, Y., Pedryczc, W.: Consensus reaching with trust evolution in social network group decision making. Expert Systems with Applications. 188, 116022 (2022) Zhang, Y., Chen, X., Gao, L., Dong, Y., Pedryczc, W.: Consensus reaching with trust evolution in social network group decision making. Expert Systems with Applications. 188, 116022 (2022)
go back to reference El Kouni, I. B., Karoui, W., & Romdhane, L. B. (2020). Node importance based label propagation algorithm for overlapping community detection in networks. Expert Systems with Applications., 162, 113020.CrossRef El Kouni, I. B., Karoui, W., & Romdhane, L. B. (2020). Node importance based label propagation algorithm for overlapping community detection in networks. Expert Systems with Applications., 162, 113020.CrossRef
go back to reference Fu, Q.-Y., Ren, J.-F., & Sun, H.-L. (2021). Iterative group-based and difference ranking method for online rating systems with spamming attacks. International Journal of Modern Physics C., 32(05), 2150059.CrossRef Fu, Q.-Y., Ren, J.-F., & Sun, H.-L. (2021). Iterative group-based and difference ranking method for online rating systems with spamming attacks. International Journal of Modern Physics C., 32(05), 2150059.CrossRef
go back to reference Gai, T., Cao, M., Chiclana, F., Wu, J., Liang, C., & Herrera-Viedma, E. (2022). A decentralized feedback mechanism with compromise behavior for large-scale group consensus reaching process with application in smart logistics supplier selection. Expert Systems with Applications., 204, 117547.CrossRef Gai, T., Cao, M., Chiclana, F., Wu, J., Liang, C., & Herrera-Viedma, E. (2022). A decentralized feedback mechanism with compromise behavior for large-scale group consensus reaching process with application in smart logistics supplier selection. Expert Systems with Applications., 204, 117547.CrossRef
go back to reference Gao, J., Dong, Y.-W., Shang, M.-S., Cai, S.-M., & Zhou, T. (2015). Group-based ranking method for online rating systems with spamming attacks. Europhysics Letters., 110(2), 28003.CrossRef Gao, J., Dong, Y.-W., Shang, M.-S., Cai, S.-M., & Zhou, T. (2015). Group-based ranking method for online rating systems with spamming attacks. Europhysics Letters., 110(2), 28003.CrossRef
go back to reference Ramos, G., Boratto, L., & Marras, M. (2021). Reputation equity in ranking systems. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3378–3382 Ramos, G., Boratto, L., & Marras, M. (2021). Reputation equity in ranking systems. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3378–3382
go back to reference Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology., 143(1), 29–36.CrossRef Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology., 143(1), 29–36.CrossRef
go back to reference Langville, A. N., & Meyer, C. D. (2012). Who’s #1? the science of rating and ranking. whos. Langville, A. N., & Meyer, C. D. (2012). Who’s #1? the science of rating and ranking. whos.
go back to reference Ji, S.-J., Zhang, Q., Li, J., Chiu, D. K., Xu, S., Yi, L., & Gong, M. (2020). A burst-based unsupervised method for detecting review spammer groups. Information Sciences., 536, 454–469.CrossRef Ji, S.-J., Zhang, Q., Li, J., Chiu, D. K., Xu, S., Yi, L., & Gong, M. (2020). A burst-based unsupervised method for detecting review spammer groups. Information Sciences., 536, 454–469.CrossRef
go back to reference Kendall, M. G. (1938). A new measure of rank correlation. Biometrika., 30(1/2), 81–93.CrossRef Kendall, M. G. (1938). A new measure of rank correlation. Biometrika., 30(1/2), 81–93.CrossRef
go back to reference Alqwadri, A., Azzeh, M., Almasalha, F.: Application of machine learning for online reputation systems. International Journal of Automation and Computing. 18(3), 492–502 (2021) Alqwadri, A., Azzeh, M., Almasalha, F.: Application of machine learning for online reputation systems. International Journal of Automation and Computing. 18(3), 492–502 (2021)
go back to reference Laureti, P., Moret, L., Zhang, Y.-C., & Yu, Y.-K. (2006). Information filtering via iterative refinement. Europhysics Letters., 75(6), 1006.CrossRef Laureti, P., Moret, L., Zhang, Y.-C., & Yu, Y.-K. (2006). Information filtering via iterative refinement. Europhysics Letters., 75(6), 1006.CrossRef
go back to reference Wu, Y.-Y., Guo, Q., Liu, J.-G., Zhang, Y.-C.: Effect of the initial configuration for user–object reputation systems. Physica A: Statistical Mechanics and its Applications. 502, 288–294 (2018) Wu, Y.-Y., Guo, Q., Liu, J.-G., Zhang, Y.-C.: Effect of the initial configuration for user–object reputation systems. Physica A: Statistical Mechanics and its Applications. 502, 288–294 (2018)
go back to reference Zhou, X., Murakami, Y., Ishida, T., Liu, X., Huang, G.: Arm: Toward adaptive and robust model for reputation aggregation. IEEE Transactions on Automation Science and Engineering. 17(1), 88–99 (2019) Zhou, X., Murakami, Y., Ishida, T., Liu, X., Huang, G.: Arm: Toward adaptive and robust model for reputation aggregation. IEEE Transactions on Automation Science and Engineering. 17(1), 88–99 (2019)
go back to reference Liang, Z., & Shi, W. (2008). Analysis of ratings on trust inference in open environments. Performance Evaluation., 65(2), 99–128.CrossRef Liang, Z., & Shi, W. (2008). Analysis of ratings on trust inference in open environments. Performance Evaluation., 65(2), 99–128.CrossRef
go back to reference Liao, H., Zeng, A., Xiao, R., Ren, Z.-M., Chen, D.-B., & Zhang, Y.-C. (2014). Ranking reputation and quality in online rating systems. PloS one., 9(5), 97146.CrossRef Liao, H., Zeng, A., Xiao, R., Ren, Z.-M., Chen, D.-B., & Zhang, Y.-C. (2014). Ranking reputation and quality in online rating systems. PloS one., 9(5), 97146.CrossRef
go back to reference Li, H., Chen, Z., Mukherjee, A., Liu, B., & Shao, J. (2015). Analyzing and detecting opinion spam on a large-scale dataset via temporal and spatial patterns. Proceedings of the International AAAI Conference on Web and Social Media, 9, 634–637.CrossRef Li, H., Chen, Z., Mukherjee, A., Liu, B., & Shao, J. (2015). Analyzing and detecting opinion spam on a large-scale dataset via temporal and spatial patterns. Proceedings of the International AAAI Conference on Web and Social Media, 9, 634–637.CrossRef
go back to reference Liu, X.-L., & Jia, S.-W. (2018). An iterative reputation ranking method via the beta probability distribution. IEEE Access., 7, 540–547.CrossRef Liu, X.-L., & Jia, S.-W. (2018). An iterative reputation ranking method via the beta probability distribution. IEEE Access., 7, 540–547.CrossRef
go back to reference Liu, X.-L., Jia, S.-W., & Gu, Y. (2019). Empirical analysis of the user reputation and clustering property for user-object bipartite networks. International Journal of Modern Physics C., 30(05), 1950035.CrossRef Liu, X.-L., Jia, S.-W., & Gu, Y. (2019). Empirical analysis of the user reputation and clustering property for user-object bipartite networks. International Journal of Modern Physics C., 30(05), 1950035.CrossRef
go back to reference Liu, X.-L., Liu, J.-G., Yang, K., Guo, Q., & Han, J.-T. (2017). Identifying online user reputation of user-object bipartite networks. Physica A: Statistical Mechanics and its Applications., 467, 508–516.CrossRef Liu, X.-L., Liu, J.-G., Yang, K., Guo, Q., & Han, J.-T. (2017). Identifying online user reputation of user-object bipartite networks. Physica A: Statistical Mechanics and its Applications., 467, 508–516.CrossRef
go back to reference Lü, L., Chen, D., Ren, X. L., Zhang, Q. M., Zhang, Y. C., & Zhou, T. (2016). Vital nodes identification in complex networks. Physics Reports., 650, 1–63.CrossRef Lü, L., Chen, D., Ren, X. L., Zhang, Q. M., Zhang, Y. C., & Zhou, T. (2016). Vital nodes identification in complex networks. Physics Reports., 650, 1–63.CrossRef
go back to reference Lu, M., Zhang, Z., Qu, Z., & Kang, Y. (2018). Lpanni: Overlapping community detection using label propagation in large-scale complex networks. IEEE Transactions on Knowledge and Data Engineering., 31(9), 1736–1749.CrossRef Lu, M., Zhang, Z., Qu, Z., & Kang, Y. (2018). Lpanni: Overlapping community detection using label propagation in large-scale complex networks. IEEE Transactions on Knowledge and Data Engineering., 31(9), 1736–1749.CrossRef
go back to reference McGlohon, M., Glance, N., & Reiter, Z. (2010). Star quality: Aggregating reviews to rank products and merchants. Proceedings of the International AAAI Conference on Web and Social Media, 4, 114–121.CrossRef McGlohon, M., Glance, N., & Reiter, Z. (2010). Star quality: Aggregating reviews to rank products and merchants. Proceedings of the International AAAI Conference on Web and Social Media, 4, 114–121.CrossRef
go back to reference Zhou, Y.-B., Lei, T., Zhou, T.: A robust ranking algorithm to spamming. Europhysics Letters. 94(4), 48002 (2011) Zhou, Y.-B., Lei, T., Zhou, T.: A robust ranking algorithm to spamming. Europhysics Letters. 94(4), 48002 (2011)
go back to reference Noekhah, S., Salim, N., & Zakaria, N. H. (2020). Opinion spam detection: Using multi-iterative graph-based model. Information Processing & Management., 57(1), 102140.CrossRef Noekhah, S., Salim, N., & Zakaria, N. H. (2020). Opinion spam detection: Using multi-iterative graph-based model. Information Processing & Management., 57(1), 102140.CrossRef
go back to reference Zhu, H., Xiao, Y., Wang, Z.-G., & Wu, J. (2022). A robust reputation iterative algorithm based on z-statistics in a rating system with thorny objects. Journal of the Operational Research Society, 1–13. Zhu, H., Xiao, Y., Wang, Z.-G., & Wu, J. (2022). A robust reputation iterative algorithm based on z-statistics in a rating system with thorny objects. Journal of the Operational Research Society, 1–13.
go back to reference Rezvani, M., & Rezvani, M. (2020). A randomized reputation system in the presence of unfair ratings. ACM Transactions on Management Information Systems (TMIS)., 11(1), 1–16.CrossRef Rezvani, M., & Rezvani, M. (2020). A randomized reputation system in the presence of unfair ratings. ACM Transactions on Management Information Systems (TMIS)., 11(1), 1–16.CrossRef
go back to reference Shang, M.-S., Lü, L., Zhang, Y.-C., & Zhou, T. (2010). Empirical analysis of web-based user-object bipartite networks. Europhysics Letters., 90(4), 48006.CrossRef Shang, M.-S., Lü, L., Zhang, Y.-C., & Zhou, T. (2010). Empirical analysis of web-based user-object bipartite networks. Europhysics Letters., 90(4), 48006.CrossRef
go back to reference Sun, H.-L., Liang, K.-P., Liao, H., & Chen, D.-B. (2021). Evaluating user reputation of online rating systems by rating statistical patterns. Knowledge-Based Systems., 219, 106895.CrossRef Sun, H.-L., Liang, K.-P., Liao, H., & Chen, D.-B. (2021). Evaluating user reputation of online rating systems by rating statistical patterns. Knowledge-Based Systems., 219, 106895.CrossRef
go back to reference Sun, Q., Wu, J., Chiclana, F., Fujita, H., & Herrera-Viedma, E. (2021). A dynamic feedback mechanism with attitudinal consensus threshold for minimum adjustment cost in group decision making. IEEE Transactions on Fuzzy Systems., 30(5), 1287–1301.CrossRef Sun, Q., Wu, J., Chiclana, F., Fujita, H., & Herrera-Viedma, E. (2021). A dynamic feedback mechanism with attitudinal consensus threshold for minimum adjustment cost in group decision making. IEEE Transactions on Fuzzy Systems., 30(5), 1287–1301.CrossRef
go back to reference Tay, W., Zhang, X., & Karimi, S. (2020). Beyond mean rating: Probabilistic aggregation of star ratings based on helpfulness. Journal of the Association for Information Science and Technology., 71(7), 784–799.CrossRef Tay, W., Zhang, X., & Karimi, S. (2020). Beyond mean rating: Probabilistic aggregation of star ratings based on helpfulness. Journal of the Association for Information Science and Technology., 71(7), 784–799.CrossRef
go back to reference Wang, Z., Gu, S., Zhao, X., & Xu, X. (2018). Graph-based review spammer group detection. Knowledge and Information Systems., 55(3), 571–597.CrossRef Wang, Z., Gu, S., Zhao, X., & Xu, X. (2018). Graph-based review spammer group detection. Knowledge and Information Systems., 55(3), 571–597.CrossRef
go back to reference Wang, Z., Hou, T., Song, D., Li, Z., & Kong, T. (2016). Detecting review spammer groups via bipartite graph projection. The Computer Journal., 59(6), 861–874.CrossRef Wang, Z., Hou, T., Song, D., Li, Z., & Kong, T. (2016). Detecting review spammer groups via bipartite graph projection. The Computer Journal., 59(6), 861–874.CrossRef
go back to reference Wang, Z., Hu, R., Chen, Q., Gao, P., & Xu, X. (2020). Collueagle: collusive review spammer detection using markov random fields. Data Mining and Knowledge Discovery., 34, 1621–1641.CrossRef Wang, Z., Hu, R., Chen, Q., Gao, P., & Xu, X. (2020). Collueagle: collusive review spammer detection using markov random fields. Data Mining and Knowledge Discovery., 34, 1621–1641.CrossRef
go back to reference Wang, Z., Wei, W., Mao, X.-L., Guo, G., Zhou, P., & Jiang, S. (2022). User-based network embedding for opinion spammer detection. Pattern Recognition., 125, 108512.CrossRef Wang, Z., Wei, W., Mao, X.-L., Guo, G., Zhou, P., & Jiang, S. (2022). User-based network embedding for opinion spammer detection. Pattern Recognition., 125, 108512.CrossRef
go back to reference Wu, Y.-Y., Guo, Q., Liu, J.-G., & Zhang, Y.-C. (2018). Effect of the initial configuration for user-object reputation systems. Physica A: Statistical Mechanics and its Applications., 502, 288–294.CrossRef Wu, Y.-Y., Guo, Q., Liu, J.-G., & Zhang, Y.-C. (2018). Effect of the initial configuration for user-object reputation systems. Physica A: Statistical Mechanics and its Applications., 502, 288–294.CrossRef
go back to reference Wu, Y., Yan, C., Ding, Z., Liu, G., Wang, P., Jiang, C., & Zhou, M. (2013). A novel method for calculating service reputation. IEEE Transactions on Automation Science and Engineering., 10(3), 634–642.CrossRef Wu, Y., Yan, C., Ding, Z., Liu, G., Wang, P., Jiang, C., & Zhou, M. (2013). A novel method for calculating service reputation. IEEE Transactions on Automation Science and Engineering., 10(3), 634–642.CrossRef
go back to reference Wang, Z., Wei, W., Mao, X.-L., Guo, G., Zhou, P., Jiang, S.: User-based network embedding for opinion spammer detection. Pattern Recognition. 125, 108512 (2022) Wang, Z., Wei, W., Mao, X.-L., Guo, G., Zhou, P., Jiang, S.: User-based network embedding for opinion spammer detection. Pattern Recognition. 125, 108512 (2022)
go back to reference Zhang, F., Yuan, S., Zhang, P., Chao, J., Yu, H.: Detecting review spammer groups based on generative adversarial networks. Information Sciences. 606, 819–836 (2022) Zhang, F., Yuan, S., Zhang, P., Chao, J., Yu, H.: Detecting review spammer groups based on generative adversarial networks. Information Sciences. 606, 819–836 (2022)
go back to reference Zhang, Z., Zhou, M., Wan, J., Lu, K., Chen, G., Liao, H.: Spammer detection via ranking aggregation of group behavior. Expert Systems with Applications. 216, 119454 (2023) Zhang, Z., Zhou, M., Wan, J., Lu, K., Chen, G., Liao, H.: Spammer detection via ranking aggregation of group behavior. Expert Systems with Applications. 216, 119454 (2023)
go back to reference Zhang, Y., Chen, X., Gao, L., Dong, Y., & Pedryczc, W. (2022). Consensus reaching with trust evolution in social network group decision making. Expert Systems with Applications., 188, 116022.CrossRef Zhang, Y., Chen, X., Gao, L., Dong, Y., & Pedryczc, W. (2022). Consensus reaching with trust evolution in social network group decision making. Expert Systems with Applications., 188, 116022.CrossRef
go back to reference Zhang, F., Hao, X., Chao, J., & Yuan, S. (2020). Label propagation-based approach for detecting review spammer groups on e-commerce websites. Knowledge-Based Systems., 193, 105520.CrossRef Zhang, F., Hao, X., Chao, J., & Yuan, S. (2020). Label propagation-based approach for detecting review spammer groups on e-commerce websites. Knowledge-Based Systems., 193, 105520.CrossRef
go back to reference Zhang, L., He, G., Cao, J., Zhu, H., & Xu, B. (2018). Spotting review spammer groups: a cosine pattern and network based method. Concurrency and Computation: Practice and Experience., 30(20), 4686.CrossRef Zhang, L., He, G., Cao, J., Zhu, H., & Xu, B. (2018). Spotting review spammer groups: a cosine pattern and network based method. Concurrency and Computation: Practice and Experience., 30(20), 4686.CrossRef
go back to reference Zhang, Z., Wan, J., Zhou, M., Lai, Z., Tessone, C. J., Chen, G., & Liao, H. (2023). Temporal burstiness and collaborative camouflage aware fraud detection. Information Processing & Management., 60(2), 103170.CrossRef Zhang, Z., Wan, J., Zhou, M., Lai, Z., Tessone, C. J., Chen, G., & Liao, H. (2023). Temporal burstiness and collaborative camouflage aware fraud detection. Information Processing & Management., 60(2), 103170.CrossRef
go back to reference Zhang, F., Yuan, S., Zhang, P., Chao, J., & Yu, H. (2022). Detecting review spammer groups based on generative adversarial networks. Information Sciences., 606, 819–836.CrossRef Zhang, F., Yuan, S., Zhang, P., Chao, J., & Yu, H. (2022). Detecting review spammer groups based on generative adversarial networks. Information Sciences., 606, 819–836.CrossRef
go back to reference Zhang, Z., Zhou, M., Wan, J., Lu, K., Chen, G., & Liao, H. (2023). Spammer detection via ranking aggregation of group behavior. Expert Systems with Applications., 216, 119454.CrossRef Zhang, Z., Zhou, M., Wan, J., Lu, K., Chen, G., & Liao, H. (2023). Spammer detection via ranking aggregation of group behavior. Expert Systems with Applications., 216, 119454.CrossRef
go back to reference Zhao, Y., & Shen, B. (2016). Empirical study of user preferences based on rating data of movies. PloS one., 11(1), 0146541. Zhao, Y., & Shen, B. (2016). Empirical study of user preferences based on rating data of movies. PloS one., 11(1), 0146541.
go back to reference Zhang, Z., Wan, J., Zhou, M., Lai, Z., Tessone, C.J., Chen, G., Liao, H.: Temporal burstiness and collaborative camouflage aware fraud detection. Information Processing & Management. 60(2), 103170 (2023) Zhang, Z., Wan, J., Zhou, M., Lai, Z., Tessone, C.J., Chen, G., Liao, H.: Temporal burstiness and collaborative camouflage aware fraud detection. Information Processing & Management. 60(2), 103170 (2023)
go back to reference Zhou, Y.-B., Lei, T., & Zhou, T. (2011). A robust ranking algorithm to spamming. Europhysics Letters., 94(4), 48002.CrossRef Zhou, Y.-B., Lei, T., & Zhou, T. (2011). A robust ranking algorithm to spamming. Europhysics Letters., 94(4), 48002.CrossRef
go back to reference Zhou, X., Murakami, Y., Ishida, T., Liu, X., & Huang, G. (2019). Arm: Toward adaptive and robust model for reputation aggregation. IEEE Transactions on Automation Science and Engineering., 17(1), 88–99.CrossRef Zhou, X., Murakami, Y., Ishida, T., Liu, X., & Huang, G. (2019). Arm: Toward adaptive and robust model for reputation aggregation. IEEE Transactions on Automation Science and Engineering., 17(1), 88–99.CrossRef
go back to reference Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology. 143(1), 29–36 (1982) Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology. 143(1), 29–36 (1982)
Metadata
Title
A Robust Rating Aggregation Method based on Rater Group Trustworthiness for Collusive Disturbance
Authors
Huan Zhu
Yu Xiao
Dongmei Chen
Jun Wu
Publication date
06-05-2024
Publisher
Springer US
Published in
Information Systems Frontiers
Print ISSN: 1387-3326
Electronic ISSN: 1572-9419
DOI
https://doi.org/10.1007/s10796-024-10489-8

Premium Partner