Skip to main content
Top
Published in:

01-12-2023 | Original Article

A satin optimized dynamic learning model (SODLM) for sentiment analysis using opinion mining

Authors: D. Shanthi, S. Santhana Prabha, N. Indumathi, S. Naganandhini, S. T. Shenbagavalli, M. Jayanthi

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Social media have grown more prevalent in daily life as a result of the quick development of internet technology. People use social media as a forum to share their thoughts, suggestions, and ideas. Sentiment analysis is used to grasp the emotional context of the language and to identify if the sentiment is good, negative, neutral, or any other emotional opinion. In the previous studies, there are several machine learning and hybrid learning techniques are developed for sentiment analysis and opinion mining. But, the majority of techniques limit with the main problems of high system complexity, low efficiency, increased training and testing time, and high false predictions. Therefore, the proposed work aims to develop a new framework, called as, Satin Optimized Dynamic Learning Model (SODLM) for sentiment analysis. In this system, the sophisticated algorithms such as Satin Bowerbird Optimization (SBBO) and Dynamic Ensemble Learning Classification (DyLC) models are used to accurately predict the sentiment from the given online review dataset. The stop words are removed, tokenized, stemmed, and lemmatized operations are carried out as part of the initial data preprocessing stage. The SBBO technique is then used to choose the relevant features from the normalized data in order to increase the classifier's ability to accurately predict sentiment. This technique also helps to reduce the complexity of training by reducing the dimensionality of features. Additionally, the prediction label is categorized using the DyLC technique into three categories: positive, negative, and neutral. In this study, the most well-known and cutting-edge datasets, including IMDB, medical services, Twitter airlines, and others, are used for validation. Several evaluation metrics are used in the performance assessment, and the results show that the SODLM offers the average accuracy. The performance assessment is carried out using several evaluation measures, and final outcomes indicate that the SODLM provides the average accuracy up to 99% for all datasets used in this research study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abayomi-Alli A, Abayomi-Alli O, Misra S, Fernandez-Sanz L (2022) Study of the Yahoo-Yahoo Hash-Tag tweets using sentiment analysis and opinion mining algorithms. Information 13:152CrossRef Abayomi-Alli A, Abayomi-Alli O, Misra S, Fernandez-Sanz L (2022) Study of the Yahoo-Yahoo Hash-Tag tweets using sentiment analysis and opinion mining algorithms. Information 13:152CrossRef
go back to reference Alotaibi SS, Alabdulkreem E, Althahabi S, Hamza MA, Rizwanullah M, Zamani AS et al (2023) Artificial fish swarm optimization with deep learning enabled opinion mining approach. Comput Syst Sci Eng 45:737–751CrossRef Alotaibi SS, Alabdulkreem E, Althahabi S, Hamza MA, Rizwanullah M, Zamani AS et al (2023) Artificial fish swarm optimization with deep learning enabled opinion mining approach. Comput Syst Sci Eng 45:737–751CrossRef
go back to reference Amulya K, Swathi S, Kamakshi P, Bhavani Y (2022) Sentiment analysis on imdb movie reviews using machine learning and deep learning algorithms. In: 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), 2022, pp 814–819 Amulya K, Swathi S, Kamakshi P, Bhavani Y (2022) Sentiment analysis on imdb movie reviews using machine learning and deep learning algorithms. In: 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), 2022, pp 814–819
go back to reference Astarkie MG, Bala B, Bharat Kumar G, Gangone S, Nagesh Y (2023) A novel approach for sentiment analysis and opinion mining on social media tweets. In: Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 2, 2023, pp 143–151 Astarkie MG, Bala B, Bharat Kumar G, Gangone S, Nagesh Y (2023) A novel approach for sentiment analysis and opinion mining on social media tweets. In: Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 2, 2023, pp 143–151
go back to reference Babu NV, Kanaga EGM (2022) Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Comput Sci 3:1–20CrossRef Babu NV, Kanaga EGM (2022) Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Comput Sci 3:1–20CrossRef
go back to reference Bakkialakshmi V, Sudalaimuthu T 2021 Anomaly Detection in Social Media Using Text-Mining and Emotion Classification with Emotion Detection. In: Cognition and Recognition: 8th International Conference, ICCR 2021, Mandya, India, December 30–31, 2021, Revised Selected Papers, 2023, pp. 67-78 Bakkialakshmi V, Sudalaimuthu T 2021 Anomaly Detection in Social Media Using Text-Mining and Emotion Classification with Emotion Detection. In: Cognition and Recognition: 8th International Conference, ICCR 2021, Mandya, India, December 30–31, 2021, Revised Selected Papers, 2023, pp. 67-78
go back to reference Basiri ME, Nemati S, Abdar M, Cambria E, Acharya UR (2021) ABCDM: An attention-based bidirectional CNN-RNN deep model for sentiment analysis. Futur Gener Comput Syst 115:279–294CrossRef Basiri ME, Nemati S, Abdar M, Cambria E, Acharya UR (2021) ABCDM: An attention-based bidirectional CNN-RNN deep model for sentiment analysis. Futur Gener Comput Syst 115:279–294CrossRef
go back to reference Gopi AP, Jyothi RNS, Narayana VL, Sandeep KS (2023) Classification of tweets data based on polarity using improved RBF kernel of SVM. Int J Inf Technol 15:965–980 Gopi AP, Jyothi RNS, Narayana VL, Sandeep KS (2023) Classification of tweets data based on polarity using improved RBF kernel of SVM. Int J Inf Technol 15:965–980
go back to reference Gu T, Zhao H, He Z, Li M, Ying D (2023) Integrating external knowledge into aspect-based sentiment analysis using graph neural network. Knowl-Based Syst 259:110025CrossRef Gu T, Zhao H, He Z, Li M, Ying D (2023) Integrating external knowledge into aspect-based sentiment analysis using graph neural network. Knowl-Based Syst 259:110025CrossRef
go back to reference Guha T, Mohan K (2021) A hybrid capsule network with attention and BiLSTM for opinion mining in text. Management Guha T, Mohan K (2021) A hybrid capsule network with attention and BiLSTM for opinion mining in text. Management
go back to reference Gupta S, Urvashi, Singh A (2023) A vocabulary-based framework for sentiment analysis. In: Computational Intelligence: Select Proceedings of InCITe 2022, ed: Springer, 2023, pp 507–515 Gupta S, Urvashi, Singh A (2023) A vocabulary-based framework for sentiment analysis. In: Computational Intelligence: Select Proceedings of InCITe 2022, ed: Springer, 2023, pp 507–515
go back to reference Hasselgren B, Chrysoulas C, Pitropakis N, Buchanan WJ (2023) Using social media & sentiment analysis to make investment decisions. Future Internet 15:5CrossRef Hasselgren B, Chrysoulas C, Pitropakis N, Buchanan WJ (2023) Using social media & sentiment analysis to make investment decisions. Future Internet 15:5CrossRef
go back to reference Hemmatian F, Sohrabi MK (2019) A survey on classification techniques for opinion mining and sentiment analysis. Artif Intell Rev 52:1495–1545CrossRef Hemmatian F, Sohrabi MK (2019) A survey on classification techniques for opinion mining and sentiment analysis. Artif Intell Rev 52:1495–1545CrossRef
go back to reference Jakate M, Lavangare S, Bhoir N, Das A, Kadam D 2023 A study on sentiment analysis of twitter data in marathi language for measuring depression. In: Intelligent Systems and Applications: Select Proceedings of ICISA 2022, ed: Springer, 2023, pp. 273–294 Jakate M, Lavangare S, Bhoir N, Das A, Kadam D 2023 A study on sentiment analysis of twitter data in marathi language for measuring depression. In: Intelligent Systems and Applications: Select Proceedings of ICISA 2022, ed: Springer, 2023, pp. 273–294
go back to reference Jayasudha J, Thilagu M 2022 A survey on sentimental analysis of student reviews using natural language processing (NLP) and Text Mining. In: Innovations in Intelligent Computing and Communication: First International Conference, ICIICC 2022a, Bhubaneswar, Odisha, India, December 16–17, 2022, Proceedings, 2023, pp. 365–378 Jayasudha J, Thilagu M 2022 A survey on sentimental analysis of student reviews using natural language processing (NLP) and Text Mining. In: Innovations in Intelligent Computing and Communication: First International Conference, ICIICC 2022a, Bhubaneswar, Odisha, India, December 16–17, 2022, Proceedings, 2023, pp. 365–378
go back to reference Kaur G, Sharma A (2023) A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis. J Big Data 10:1–23CrossRef Kaur G, Sharma A (2023) A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis. J Big Data 10:1–23CrossRef
go back to reference Keramatfar A, Amirkhani H, Jalaly Bidgoly A (2023) Multi-thread hierarchical deep model for context-aware sentiment analysis. J Inform Sci 49:133–144CrossRef Keramatfar A, Amirkhani H, Jalaly Bidgoly A (2023) Multi-thread hierarchical deep model for context-aware sentiment analysis. J Inform Sci 49:133–144CrossRef
go back to reference Kora R, Mohammed A (2023) An enhanced approach for sentiment analysis based on meta-ensemble deep learning. Soc Netw Anal Min 13:38CrossRef Kora R, Mohammed A (2023) An enhanced approach for sentiment analysis based on meta-ensemble deep learning. Soc Netw Anal Min 13:38CrossRef
go back to reference Kumar RS, Saviour Devaraj AF, Rajeswari M, Julie EG, Robinson YH, Shanmuganathan V (2021) Exploration of sentiment analysis and legitimate artistry for opinion mining. Multimed Tools Appl 81:1989–12004 Kumar RS, Saviour Devaraj AF, Rajeswari M, Julie EG, Robinson YH, Shanmuganathan V (2021) Exploration of sentiment analysis and legitimate artistry for opinion mining. Multimed Tools Appl 81:1989–12004
go back to reference Kumaresan C, Thangaraju P (2023) Ensemble learning based sentiment analysis for diversified text. Meas Sens 25:100663CrossRef Kumaresan C, Thangaraju P (2023) Ensemble learning based sentiment analysis for diversified text. Meas Sens 25:100663CrossRef
go back to reference Lagrari FE, ElKettani Y 2023 A Comparative Study of a New Customized Bert for Sentiment Analysis. In: Sentiment Analysis and Deep Learning: Proceedings of ICSADL 2022, ed: Springer, 2023, pp. 315–322 Lagrari FE, ElKettani Y 2023 A Comparative Study of a New Customized Bert for Sentiment Analysis. In: Sentiment Analysis and Deep Learning: Proceedings of ICSADL 2022, ed: Springer, 2023, pp. 315–322
go back to reference Ligthart A, Catal C, Tekinerdogan B (2021) Systematic reviews in sentiment analysis: a tertiary study. Artif Intell Rev 54:4997–5053CrossRef Ligthart A, Catal C, Tekinerdogan B (2021) Systematic reviews in sentiment analysis: a tertiary study. Artif Intell Rev 54:4997–5053CrossRef
go back to reference Mann S, Arora J, Bhatia M, Sharma R, Taragi R 2022 Twitter sentiment analysis using enhanced bert. In: Intelligent Systems and Applications: Select Proceedings of ICISA 2022, ed: Springer, 2023, pp 263–271 Mann S, Arora J, Bhatia M, Sharma R, Taragi R 2022 Twitter sentiment analysis using enhanced bert. In: Intelligent Systems and Applications: Select Proceedings of ICISA 2022, ed: Springer, 2023, pp 263–271
go back to reference Nasfi R, Bouguila N (2022) Sentiment analysis from user reviews using a hybrid generative-discriminative HMM-SVM approach. In: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, S+ SSPR 2022b, Montreal, QC, Canada, August 26–27, 2022, Proceedings, 2023, pp 74–83 Nasfi R, Bouguila N (2022) Sentiment analysis from user reviews using a hybrid generative-discriminative HMM-SVM approach. In: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, S+ SSPR 2022b, Montreal, QC, Canada, August 26–27, 2022, Proceedings, 2023, pp 74–83
go back to reference Nurcahyawati V, Mustaffa Z (2023) Improving sentiment reviews classification performance using support vector machine-fuzzy matching algorithm. Bull Electr Eng Inform 12:1817–1824CrossRef Nurcahyawati V, Mustaffa Z (2023) Improving sentiment reviews classification performance using support vector machine-fuzzy matching algorithm. Bull Electr Eng Inform 12:1817–1824CrossRef
go back to reference Qaisar SM (2020) Sentiment analysis of IMDb movie reviews using long short-term memory. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS), 2020, pp 1–4 Qaisar SM (2020) Sentiment analysis of IMDb movie reviews using long short-term memory. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS), 2020, pp 1–4
go back to reference Rathor S, Prakash Y (2022) Application of machine learning for sentiment analysis of movies using imdb rating. In: 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), 2022, pp 196–199 Rathor S, Prakash Y (2022) Application of machine learning for sentiment analysis of movies using imdb rating. In: 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), 2022, pp 196–199
go back to reference Saravanan M, Jayanthi J, Sakthi U, Rajkumar R, Joshi GP, Dang LM et al (2022) Intelligent satin bowerbird optimizer based compression technique for remote sensing images. Comput Mater Continua 72(2):2684 Saravanan M, Jayanthi J, Sakthi U, Rajkumar R, Joshi GP, Dang LM et al (2022) Intelligent satin bowerbird optimizer based compression technique for remote sensing images. Comput Mater Continua 72(2):2684
go back to reference Singh DP, Joseph SG, Selvi VT, Karunakaran S, Appasami G, Jegajothi B (2022) Quasi-Oppositional Satin Bowerbird with Deep Learning based Content based Image Retrieval. In: 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), 2022, pp 998–1005 Singh DP, Joseph SG, Selvi VT, Karunakaran S, Appasami G, Jegajothi B (2022) Quasi-Oppositional Satin Bowerbird with Deep Learning based Content based Image Retrieval. In: 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), 2022, pp 998–1005
go back to reference Sinha A, Chakma K (2022) A comparative analysis of machine learning based sentiment analysis. In: Artificial Intelligence: First International Symposium, ISAI 2022, Haldia, India, February 17-22, 2022, Revised Selected Papers, 2023, pp 123-132 Sinha A, Chakma K (2022) A comparative analysis of machine learning based sentiment analysis. In: Artificial Intelligence: First International Symposium, ISAI 2022, Haldia, India, February 17-22, 2022, Revised Selected Papers, 2023, pp 123-132
go back to reference Tan KL, Lee CP, Anbananthen KSM, Lim KM (2022) RoBERTa-LSTM: A hybrid model for sentiment analysis with transformer and recurrent neural network. IEEE Access 10:21517–21525CrossRef Tan KL, Lee CP, Anbananthen KSM, Lim KM (2022) RoBERTa-LSTM: A hybrid model for sentiment analysis with transformer and recurrent neural network. IEEE Access 10:21517–21525CrossRef
go back to reference Tarımer İ, Çoban A, Kocaman AE (2019) Sentiment analysis on IMDB movie comments and Twitter data by machine learning and vector space techniques. arXiv preprint arXiv:1903.11983 Tarımer İ, Çoban A, Kocaman AE (2019) Sentiment analysis on IMDB movie comments and Twitter data by machine learning and vector space techniques. arXiv preprint arXiv:​1903.​11983
go back to reference Vega-Barrios A, Hernández RJA, Duana-Avila D (2023) Sentimental analysis of female entrepreneurs based on public tweets. J Admin Sci 4:14–21 Vega-Barrios A, Hernández RJA, Duana-Avila D (2023) Sentimental analysis of female entrepreneurs based on public tweets. J Admin Sci 4:14–21
go back to reference Vijarania M, Gambhir A, Sehrawat D, Gupta S (2022) Prediction of movie success using sentimental analysis and data mining. In: Applications of Computational Science in Artificial Intelligence, ed: IGI Global, 2022, pp 174–189 Vijarania M, Gambhir A, Sehrawat D, Gupta S (2022) Prediction of movie success using sentimental analysis and data mining. In: Applications of Computational Science in Artificial Intelligence, ed: IGI Global, 2022, pp 174–189
go back to reference Wang Y, Guo J, Yuan C, Li B (2022) Sentiment analysis of Twitter data. Appl Sci 12:11775CrossRef Wang Y, Guo J, Yuan C, Li B (2022) Sentiment analysis of Twitter data. Appl Sci 12:11775CrossRef
go back to reference Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev 55:5731–5780CrossRef Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev 55:5731–5780CrossRef
Metadata
Title
A satin optimized dynamic learning model (SODLM) for sentiment analysis using opinion mining
Authors
D. Shanthi
S. Santhana Prabha
N. Indumathi
S. Naganandhini
S. T. Shenbagavalli
M. Jayanthi
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01114-8

Premium Partner