Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Autonomous Robots 6/2018

07-12-2017

A sensor-based approach for fault detection and diagnosis for robotic systems

Authors: Eliahu Khalastchi, Meir Kalech

Published in: Autonomous Robots | Issue 6/2018

Log in

Abstract

As we rely more on robots, thus it becomes important that a continuous successful operation is maintained. Unfortunately, these sophisticated, machines are susceptible to different faults. Some faults might quickly deteriorate into a catastrophe. Thus, it becomes important to apply a fault detection and diagnosis (FDD) mechanism such that faults will be diagnosed in time, allowing a recovery process. Yet, some types of robots require an FDD approach to be accurate, online, quick, able to detect unknown faults, computationally light, and practical to construct. Having all these features together challenges typical model-based, data-driven, and knowledge-based approaches. In this paper we present the SFDD approach that meets these requirements by combining model-based and data-driven techniques. The SFDD utilizes correlation detection, pattern recognition, and a model of structural dependencies. We present two different implementations of the SFDD. In addition, we introduce a new data set, to be used as a public benchmark for FDD, which is challenging due to the contextual nature of injected faults. We show the SFDD implementations are significantly more accurate than three competing approaches, on the benchmark, a physical robot, and a commercial UAV domains. Finally, we show the contribution of each feature of the SFDD.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abreu, R., Zoeteweij, P. & Van Gemund, A. J. (2009). Spectrum-based multiple fault localization. In 24th IEEE/ACM international conference on automated software engineering, Auckland. Abreu, R., Zoeteweij, P. & Van Gemund, A. J. (2009). Spectrum-based multiple fault localization. In 24th IEEE/ACM international conference on automated software engineering, Auckland.
go back to reference Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2011). Simultaneous debugging of software faults. Journal of Systems and Software, 84(4), 573–586. CrossRef Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2011). Simultaneous debugging of software faults. Journal of Systems and Software, 84(4), 573–586. CrossRef
go back to reference Agmon, N., Kraus, S., & Kaminka, G. A. (2008). Multi-robot perimeter patrol in adversarial settings. In IEEE international conference on robotics and automation (ICRA), Pasadena (pp. 2339–2345). Agmon, N., Kraus, S., & Kaminka, G. A. (2008). Multi-robot perimeter patrol in adversarial settings. In IEEE international conference on robotics and automation (ICRA), Pasadena (pp. 2339–2345).
go back to reference Akerkar, R., & Sajja, P. (2010). Knowledge-based systems. Sudbury, MA: Jones & Bartlett Publishers. Akerkar, R., & Sajja, P. (2010). Knowledge-based systems. Sudbury, MA: Jones & Bartlett Publishers.
go back to reference Akhtar, N., & Kuestenmacher, A. (2011). Using Naive Physics for unknown external faults in robotics. In The 22nd international workshop on principles of diagnosis (DX-2011), Murnau, Germany. Akhtar, N., & Kuestenmacher, A. (2011). Using Naive Physics for unknown external faults in robotics. In The 22nd international workshop on principles of diagnosis (DX-2011), Murnau, Germany.
go back to reference Birk, A., & Carpin, S. (2006). Rescue robotics–A crucial milestone on the road to autonomous systems. Advanced Robotics, 20(5), 595–605. CrossRef Birk, A., & Carpin, S. (2006). Rescue robotics–A crucial milestone on the road to autonomous systems. Advanced Robotics, 20(5), 595–605. CrossRef
go back to reference Birnbaum, Z., et al. (2015). Unmanned Aerial Vehicle security using behavioral profiling. In International conference on unmanned aircraft systems (ICUAS), Denver, CO. Birnbaum, Z., et al. (2015). Unmanned Aerial Vehicle security using behavioral profiling. In International conference on unmanned aircraft systems (ICUAS), Denver, CO.
go back to reference Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41, 1–58. CrossRef Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41, 1–58. CrossRef
go back to reference Christensen, A. L., O’Grady, R., Birattari, M., & Dorigo, M. (2008). Fault detection in autonomous robots based on fault injection and learning. Autonomous Robots, 24, 49–67. CrossRef Christensen, A. L., O’Grady, R., Birattari, M., & Dorigo, M. (2008). Fault detection in autonomous robots based on fault injection and learning. Autonomous Robots, 24, 49–67. CrossRef
go back to reference de Kleer, J., & Williams, B. C. (1987). Diagnosing multiple faults. Artificial Intelligence, 32(1), 97–130. CrossRefMATH de Kleer, J., & Williams, B. C. (1987). Diagnosing multiple faults. Artificial Intelligence, 32(1), 97–130. CrossRefMATH
go back to reference Friedrich, G., Stumptner, M., & Wotawa, F. (1999). Model-based diagnosis of hardware designs. Artificial Intelligence, 111, 3–39. MathSciNetCrossRefMATH Friedrich, G., Stumptner, M., & Wotawa, F. (1999). Model-based diagnosis of hardware designs. Artificial Intelligence, 111, 3–39. MathSciNetCrossRefMATH
go back to reference Golombek, R., Wrede, S., Hanheide, M., & Heckmann, M. (2011). Online data-driven fault detection for robotic systems. In IEEE/RSJ international conference on intelligent robots and systems (IROS), San Francisco, CA. Golombek, R., Wrede, S., Hanheide, M., & Heckmann, M. (2011). Online data-driven fault detection for robotic systems. In IEEE/RSJ international conference on intelligent robots and systems (IROS), San Francisco, CA.
go back to reference Goodrich, M. A., et al. (2008). Supporting wilderness search and rescue using a camera-equipped mini UAV. Field Robotics, 25(1), 89–110. MathSciNetCrossRef Goodrich, M. A., et al. (2008). Supporting wilderness search and rescue using a camera-equipped mini UAV. Field Robotics, 25(1), 89–110. MathSciNetCrossRef
go back to reference Hashimoto, M., Kawashima, H., & Oba, F. (2003). A multi-model based fault detection and diagnosis of internal sensors for mobile robot. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Las Vegas, Nevada, USA. Hashimoto, M., Kawashima, H., & Oba, F. (2003). A multi-model based fault detection and diagnosis of internal sensors for mobile robot. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Las Vegas, Nevada, USA.
go back to reference Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22, 85–126. CrossRefMATH Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22, 85–126. CrossRefMATH
go back to reference Hornung, R., et al. (2014). Model-free robot anomaly detection. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Chicago. Hornung, R., et al. (2014). Model-free robot anomaly detection. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Chicago.
go back to reference IFR. (2016). Executive summary world robotics 2016 industrial robots. In The International Dederation of Robotics (IFR). IFR. (2016). Executive summary world robotics 2016 industrial robots. In The International Dederation of Robotics (IFR).
go back to reference IFR. (2016). Executive summary world robotics 2016 service robot. In The International Federation of Robotics (IFR). IFR. (2016). Executive summary world robotics 2016 service robot. In The International Federation of Robotics (IFR).
go back to reference Isermann, R. (2005). Model-based fault-detection and diagnosis-status and applications. Annual Reviews in control, 29(1), 71–85. CrossRef Isermann, R. (2005). Model-based fault-detection and diagnosis-status and applications. Annual Reviews in control, 29(1), 71–85. CrossRef
go back to reference Khalastchi, E., Kalech, M., Kaminka, G. A., & Lin, R. (2015). Online data-driven anomaly detection in autonomous robots. Knowledge and Information Systems, 43(3), 657–688. CrossRef Khalastchi, E., Kalech, M., Kaminka, G. A., & Lin, R. (2015). Online data-driven anomaly detection in autonomous robots. Knowledge and Information Systems, 43(3), 657–688. CrossRef
go back to reference Khalastchi, E., Kalech, M., & Rokach, L. (2013). Sensor fault detection and diagnosis for autonomous systems. In International conference on Autonomous agents and multi-agent systems (AAMAS), Saint Paul. Khalastchi, E., Kalech, M., & Rokach, L. (2013). Sensor fault detection and diagnosis for autonomous systems. In International conference on Autonomous agents and multi-agent systems (AAMAS), Saint Paul.
go back to reference Khalastchi, E., Kalech, M., & Rokach, L. (2014). A Hybrid Approach for Fault Detection in Autonomous Physical Agents. In International conference on Autonomous agents and multi-agent systems (AAMAS), Paris. Khalastchi, E., Kalech, M., & Rokach, L. (2014). A Hybrid Approach for Fault Detection in Autonomous Physical Agents. In International conference on Autonomous agents and multi-agent systems (AAMAS), Paris.
go back to reference Khalastchi, E., Kaminka, G. A., Kalech, M., & Lin, R. (2011). Online anomaly detection in unmanned vehicles. In International conference on Autonomous agents and multi-agent systems (AAMAS), Taipei. Khalastchi, E., Kaminka, G. A., Kalech, M., & Lin, R. (2011). Online anomaly detection in unmanned vehicles. In International conference on Autonomous agents and multi-agent systems (AAMAS), Taipei.
go back to reference Kleiner, A., Steinbauer, G., & Wotawa, F. (2008). Towards automated online diagnosis of robot navigation software. In International conference on simulation, modeling, and programming for autonomous robots, Venice, Italy. Kleiner, A., Steinbauer, G., & Wotawa, F. (2008). Towards automated online diagnosis of robot navigation software. In International conference on simulation, modeling, and programming for autonomous robots, Venice, Italy.
go back to reference Kodratoff, Y., & Michalski, R. S. (2014). Machine learning: An artificial intelligence approach. Burlington: Morgan Kaufmann. Kodratoff, Y., & Michalski, R. S. (2014). Machine learning: An artificial intelligence approach. Burlington: Morgan Kaufmann.
go back to reference Leeke, M., Arif, S., Jhumka, A., & Anand, S. S. (2011). A methodology for the generation of efficient error detection mechanisms. In IEEE/IFIP 41st international conference on dependable systems and networks (DSN), Hong Kong (pp. 25–36). Leeke, M., Arif, S., Jhumka, A., & Anand, S. S. (2011). A methodology for the generation of efficient error detection mechanisms. In IEEE/IFIP 41st international conference on dependable systems and networks (DSN), Hong Kong (pp. 25–36).
go back to reference Lin, R., Khalastchi, E., & Kaminka, G. A. (2010). Detecting anomalies in unmanned vehicles using the mahalanobis distance. In International conference on robotics and automation (ICRA), Anchorage, AK. Lin, R., Khalastchi, E., & Kaminka, G. A. (2010). Detecting anomalies in unmanned vehicles using the mahalanobis distance. In International conference on robotics and automation (ICRA), Anchorage, AK.
go back to reference Mahalanobis, P. C. (1936). On the generalised distance in statistics. The National Institute of Sciences of India, 2, 49–55. MATH Mahalanobis, P. C. (1936). On the generalised distance in statistics. The National Institute of Sciences of India, 2, 49–55. MATH
go back to reference Perry, A.R. (2004). The flightgear flight simulator. In: USENIX annual technical conference, Boston, MA. Perry, A.R. (2004). The flightgear flight simulator. In: USENIX annual technical conference, Boston, MA.
go back to reference Pettersson, O. (2005). Execution monitoring in robotics: A survey. Robotics and Autonomous Systems, 53(2), 73–88. MathSciNetCrossRef Pettersson, O. (2005). Execution monitoring in robotics: A survey. Robotics and Autonomous Systems, 53(2), 73–88. MathSciNetCrossRef
go back to reference Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007). Incremental local outlier detection for data streams (pp. 504–515). In IEEE symposium on computational intelligence and data mining (CIDM), Honolulu, HI. Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007). Incremental local outlier detection for data streams (pp. 504–515). In IEEE symposium on computational intelligence and data mining (CIDM), Honolulu, HI.
go back to reference Quigley, M., et al. (2009). ROS: An open-source Robot Operating System. In ICRA workshop on open source software, Kobe, Japan. Quigley, M., et al. (2009). ROS: An open-source Robot Operating System. In ICRA workshop on open source software, Kobe, Japan.
go back to reference Sharma, A. B., Golubchik, L., & Govindan, R. (2010). Sensor faults: Detection methods and prevalence in real-world datasets. ACM Transactions on Sensor Networks (TOSN), 6(3), 23. CrossRef Sharma, A. B., Golubchik, L., & Govindan, R. (2010). Sensor faults: Detection methods and prevalence in real-world datasets. ACM Transactions on Sensor Networks (TOSN), 6(3), 23. CrossRef
go back to reference Steinbauer, G. (2013). A Survey about Faults of Robots Used in RoboCup. RoboCup 2012: Robot Soccer World Cup XVI (pp. 344–355). Berlin: Springer. CrossRef Steinbauer, G. (2013). A Survey about Faults of Robots Used in RoboCup. RoboCup 2012: Robot Soccer World Cup XVI (pp. 344–355). Berlin: Springer. CrossRef
go back to reference Steinbauer, G., Morth, M., & Wotawa, F. (2005). Real-time diagnosis and repair of faults of robot control software. Robot Soccer World Cup, (pp. 13–23). Steinbauer, G., Morth, M., & Wotawa, F. (2005). Real-time diagnosis and repair of faults of robot control software. Robot Soccer World Cup, (pp. 13–23).
go back to reference Steinbauer, G., & Wotawa, F. (2005). Detecting and locating faults in the control software of autonomous mobile robots. In International joint conference on artificial intelligence (IJCAI), Edinburgh, Scotland (pp. 1742–1743). Steinbauer, G., & Wotawa, F. (2005). Detecting and locating faults in the control software of autonomous mobile robots. In International joint conference on artificial intelligence (IJCAI), Edinburgh, Scotland (pp. 1742–1743).
go back to reference Steinbauer, G., & Wotawa, F. (2010). On the Way to Automated Belief Repair for Autonomous Robots. In The 21st international workshop on principles of diagnosis (DX), Portland, Oregon. Steinbauer, G., & Wotawa, F. (2010). On the Way to Automated Belief Repair for Autonomous Robots. In The 21st international workshop on principles of diagnosis (DX), Portland, Oregon.
go back to reference Steinwart, I., & Christmann, A. (2008). Support vector machines. Berlin: Springer. MATH Steinwart, I., & Christmann, A. (2008). Support vector machines. Berlin: Springer. MATH
go back to reference Stern, R. T., Kalech, M., Feldman, A., & Provan, G. M. (2012). Exploring the Duality in Conflict-Directed Model-Based Diagnosis. In The 26th conference on artificial intelligence (AAAI), Toronto, Ontario, Canada. Stern, R. T., Kalech, M., Feldman, A., & Provan, G. M. (2012). Exploring the Duality in Conflict-Directed Model-Based Diagnosis. In The 26th conference on artificial intelligence (AAAI), Toronto, Ontario, Canada.
go back to reference Thrun, S. (2002). Robotic mapping: A survey. Exploring artificial intelligence in the new millennium, 1, 1–35. Thrun, S. (2002). Robotic mapping: A survey. Exploring artificial intelligence in the new millennium, 1, 1–35.
go back to reference Travé-Massuyès, L. (2014). Bridging control and artificial intelligence theories for diagnosis: A survey. Engineering Applications of Artificial Intelligence, 27, 1–16. CrossRef Travé-Massuyès, L. (2014). Bridging control and artificial intelligence theories for diagnosis: A survey. Engineering Applications of Artificial Intelligence, 27, 1–16. CrossRef
go back to reference Wienke, J. l. W. S., (2016). Autonomous fault detection for performance bugs in component-based robotic systems. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Daejeon, Korea. Wienke, J. l. W. S., (2016). Autonomous fault detection for performance bugs in component-based robotic systems. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Daejeon, Korea.
go back to reference Williams, B. C., & Ragno, R. J. (2007). Conflict-directed A* and its role in model-based embedded systems. Discrete Applied Mathematics, 155(12), 1562–1595. MathSciNetCrossRefMATH Williams, B. C., & Ragno, R. J. (2007). Conflict-directed A* and its role in model-based embedded systems. Discrete Applied Mathematics, 155(12), 1562–1595. MathSciNetCrossRefMATH
go back to reference Zaman, S., & Steinbauer, G. (2013). Automated generation of diagnosis models for ROS-based robot systems. In The 24th international workshop on principles of diagnosis, Jerusalem, Israel. Zaman, S., & Steinbauer, G. (2013). Automated generation of diagnosis models for ROS-based robot systems. In The 24th international workshop on principles of diagnosis, Jerusalem, Israel.
go back to reference Zaman, S., et al. (2013). An integrated model-based diagnosis and repair architecture for ROS-based robot systems. In IEEE international conference on robotics and automation (ICRA), Karlsruhe. Zaman, S., et al. (2013). An integrated model-based diagnosis and repair architecture for ROS-based robot systems. In IEEE international conference on robotics and automation (ICRA), Karlsruhe.
Metadata
Title
A sensor-based approach for fault detection and diagnosis for robotic systems
Authors
Eliahu Khalastchi
Meir Kalech
Publication date
07-12-2017
Publisher
Springer US
Published in
Autonomous Robots / Issue 6/2018
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9688-z

Other articles of this Issue 6/2018

Autonomous Robots 6/2018 Go to the issue