Skip to main content
Top
Published in: Wireless Networks 3/2017

13-01-2016

A separation principle for resource allocation in industrial wireless sensor networks

Authors: Feilong Lin, Cailian Chen, Tian He, Kai Ma, Xinping Guan

Published in: Wireless Networks | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Industrial production lines have been used to assemble a wide range of commercial goods such as metallurgy, automobile, and electronic devices. Since these production lines create tens of trillions of dollars annually, their production efficiency, cost, and safety are critical for global economy. This paper uses industrial wireless sensor networks (IWSNs) to monitor multi-stage production lines. Unlike traditional surveillance WSNs, IWSNs feature a unique cascaded network topology, which can be leveraged to optimize network performance (e.g., end-to-end delay). To our best knowledge, research along this direction is lacking. Specifically, considering the physical characteristics and functional requirements of production lines, we introduce the cascaded FieldNets where each FieldNet is a field sub-net corresponding to one process stage. In particular, the end-to-end minimization oriented resource allocation problem is concerned. It is a nonlinear mixed integer programming problem formulated by both (1) channel allocation among FieldNets and (2) multichannel transmission scheduling within each FieldNet. To solve it, a separation principle is proposed, by which we prove that the resource allocation within each FieldNet can be determined independently from the channels allocation among FieldNets. Performance evaluation demonstrates that the proposed resource allocation approach provides a \(10{\times }\) larger region of schedulability and achieves as low as 10 % of end-to-end delay compared with the scheduling approach in WirelessHART, and only consumes half of the energy based on some existing MACs such as Y-MAC and EM-MAC under high-traffic condition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmed, I., Mohammed, A., & Alnuweiri, H. (2013). On the fairness of resource allocation in wireless mesh networks: A survey. Wireless Networks, 19(6), 1451–1468.CrossRef Ahmed, I., Mohammed, A., & Alnuweiri, H. (2013). On the fairness of resource allocation in wireless mesh networks: A survey. Wireless Networks, 19(6), 1451–1468.CrossRef
2.
go back to reference Anastasi, G., Conti, M., & Di Francesco, M. (2011). A comprehensive analysis of the MAC unreliability problem in IEEE 802.15. 4 wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(1), 52–65.CrossRef Anastasi, G., Conti, M., & Di Francesco, M. (2011). A comprehensive analysis of the MAC unreliability problem in IEEE 802.15. 4 wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(1), 52–65.CrossRef
3.
go back to reference Chen, C., Zhu, S., Guan, X., & Shen, X. (2014). Wireless sensor networks: Distributed consensus estimation. Berlin: Springer.CrossRefMATH Chen, C., Zhu, S., Guan, X., & Shen, X. (2014). Wireless sensor networks: Distributed consensus estimation. Berlin: Springer.CrossRefMATH
4.
go back to reference Evans, P. C., & Annunziata, M. (2012). Industrial Internet: Pushing the boundaries of minds and machines (pp. 1–37). Fairfield: General Electric Co. Evans, P. C., & Annunziata, M. (2012). Industrial Internet: Pushing the boundaries of minds and machines (pp. 1–37). Fairfield: General Electric Co.
5.
go back to reference Gilani, M. H. S., Sarrafi, I., & Abbaspour, M. (2013). An adaptive CSMA/TDMA hybrid MAC for energy and throughput improvement of wireless sensor networks. Ad Hoc Networks, 11(4), 1297–1304.CrossRef Gilani, M. H. S., Sarrafi, I., & Abbaspour, M. (2013). An adaptive CSMA/TDMA hybrid MAC for energy and throughput improvement of wireless sensor networks. Ad Hoc Networks, 11(4), 1297–1304.CrossRef
6.
go back to reference Güngör, V. Ç., & Hancke, G. P. (2013). Industrial wireless sensor networks: Applications, protocols, and standards. Boca Raton: CRC Press. Güngör, V. Ç., & Hancke, G. P. (2013). Industrial wireless sensor networks: Applications, protocols, and standards. Boca Raton: CRC Press.
7.
go back to reference Hemmecke, R., Köppe, M., Lee, J., & Weismantel, R. (2010). Nonlinear integer programming. In: 50 Years of Integer Programming 1958–2008 (pp. 561–618). Berlin: Springer. Hemmecke, R., Köppe, M., Lee, J., & Weismantel, R. (2010). Nonlinear integer programming. In: 50 Years of Integer Programming 1958–2008 (pp. 561–618). Berlin: Springer.
8.
go back to reference IEEE Standards Committee. (2006). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE Standards Committee. (2006). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs).
9.
go back to reference IEEE Standards Committee. (2012). IEEE standard for local and metropolitan area networks–part. 15.4: Low-rate wireless personal area networks (LR-WPANs)—Amendament1: MAC sublayer. IEEE Standards Committee. (2012). IEEE standard for local and metropolitan area networks–part. 15.4: Low-rate wireless personal area networks (LR-WPANs)—Amendament1: MAC sublayer.
10.
go back to reference Int. Electrotech. Commission. (2010). Std. 62 591: Industrial communication networks-wireless communication network and communication profiles-WirelessHART. Int. Electrotech. Commission. (2010). Std. 62 591: Industrial communication networks-wireless communication network and communication profiles-WirelessHART.
11.
go back to reference ISA100 Standards Committee. (2009). ISA100. 11a, wireless systems for industrial automation: Process control and related applications. ISA100 Standards Committee. (2009). ISA100. 11a, wireless systems for industrial automation: Process control and related applications.
12.
go back to reference Kim, Y., Shin, H., & Cha, H. (2008). Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks. In Proceedings of the 7th international conference on Information processing in sensor networks (IPSN’08), St. Louis, Missouri, USA (pp. 53–63). Kim, Y., Shin, H., & Cha, H. (2008). Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks. In Proceedings of the 7th international conference on Information processing in sensor networks (IPSN’08), St. Louis, Missouri, USA (pp. 53–63).
13.
go back to reference Kunert, K., Jonsson, M., & Uhlemann, E. (2010). Exploiting time and frequency diversity in IEEE 802.15. 4 industrial networks for enhanced reliability and throughput. In Proceedings of 15th IEEE conference on emerging technologies and factory automation (ETFA’10), Bilbao, Spain (pp. 1–9). Kunert, K., Jonsson, M., & Uhlemann, E. (2010). Exploiting time and frequency diversity in IEEE 802.15. 4 industrial networks for enhanced reliability and throughput. In Proceedings of 15th IEEE conference on emerging technologies and factory automation (ETFA’10), Bilbao, Spain (pp. 1–9).
14.
go back to reference Li, D., & Sun, X. (2006). Nonlinear integer programming. Berlin: Springer.MATH Li, D., & Sun, X. (2006). Nonlinear integer programming. Berlin: Springer.MATH
15.
go back to reference Lin, F., Chen, C., Li, L., Xu, H., & Guan, X. (2014). A novel spectrum sharing scheme for industrial cognitive radio networks: From collective motion perspective. In Proceedings of the 2014 IEEE international conference on communications (ICC’14), Sydney, Australia (pp. 203–208). Lin, F., Chen, C., Li, L., Xu, H., & Guan, X. (2014). A novel spectrum sharing scheme for industrial cognitive radio networks: From collective motion perspective. In Proceedings of the 2014 IEEE international conference on communications (ICC’14), Sydney, Australia (pp. 203–208).
16.
go back to reference Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.CrossRef Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.CrossRef
17.
go back to reference Neely, M. J. (2013). Delay-based network utility maximization. IEEE/ACM Transactions on Networking, 21(1), 41–54.CrossRef Neely, M. J. (2013). Delay-based network utility maximization. IEEE/ACM Transactions on Networking, 21(1), 41–54.CrossRef
18.
go back to reference Pham, T. L., & Kim, D. S. (2014). Routing protocol over lossy links for ISA100. 11a industrial wireless networks. Wireless Networks, 20(8), 2359–2370.CrossRef Pham, T. L., & Kim, D. S. (2014). Routing protocol over lossy links for ISA100. 11a industrial wireless networks. Wireless Networks, 20(8), 2359–2370.CrossRef
19.
go back to reference Ross, S. M. (2014). Introduction to probability models. London: Academic Press.MATH Ross, S. M. (2014). Introduction to probability models. London: Academic Press.MATH
20.
go back to reference Saifullah, A., Xu, Y., Lu, C., & Chen, Y. (2015). End-to-end communication delay analysis in industrial wireless networks. IEEE Transactions on Computers, 64(5), 1361–1374.MathSciNetCrossRef Saifullah, A., Xu, Y., Lu, C., & Chen, Y. (2015). End-to-end communication delay analysis in industrial wireless networks. IEEE Transactions on Computers, 64(5), 1361–1374.MathSciNetCrossRef
21.
go back to reference Shen, W., Zhang, T., Gidlund, M., & Dobslaw, F. (2013). SAS-TDMA: a source aware scheduling algorithm for real-time communication in industrial wireless sensor networks. Wireless Networks, 19(6), 1155–1170.CrossRef Shen, W., Zhang, T., Gidlund, M., & Dobslaw, F. (2013). SAS-TDMA: a source aware scheduling algorithm for real-time communication in industrial wireless sensor networks. Wireless Networks, 19(6), 1155–1170.CrossRef
22.
go back to reference Shen, W., Zhang, T., Barac, F., & Gidlund, M. (2014). PriorityMAC: A priority-enhanced MAC protocol for critical traffic in industrial wireless sensor and actuator networks. IEEE Transactions on Industrial Informatics, 10(1), 824–835.CrossRef Shen, W., Zhang, T., Barac, F., & Gidlund, M. (2014). PriorityMAC: A priority-enhanced MAC protocol for critical traffic in industrial wireless sensor and actuator networks. IEEE Transactions on Industrial Informatics, 10(1), 824–835.CrossRef
23.
go back to reference Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2014). EM-MAC: A dynamic multichannel energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 12th ACM international symposium on mobile ad hoc networking and computing (MobiHoc’11), Paris, France (pp. 23–34). Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2014). EM-MAC: A dynamic multichannel energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 12th ACM international symposium on mobile ad hoc networking and computing (MobiHoc’11), Paris, France (pp. 23–34).
24.
go back to reference Toscano, E., & Lo Bello, L. (2012). Multichannel superframe scheduling for IEEE 802.15. 4 industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(2), 337–350.CrossRef Toscano, E., & Lo Bello, L. (2012). Multichannel superframe scheduling for IEEE 802.15. 4 industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(2), 337–350.CrossRef
25.
go back to reference Willig, A., & Uhlemann, E. (2014). Deadline-aware scheduling of cooperative relayers in TDMA-based wireless industrial networks. Wireless Networks, 20(1), 73–88.CrossRef Willig, A., & Uhlemann, E. (2014). Deadline-aware scheduling of cooperative relayers in TDMA-based wireless industrial networks. Wireless Networks, 20(1), 73–88.CrossRef
Metadata
Title
A separation principle for resource allocation in industrial wireless sensor networks
Authors
Feilong Lin
Cailian Chen
Tian He
Kai Ma
Xinping Guan
Publication date
13-01-2016
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2017
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-1188-5

Other articles of this Issue 3/2017

Wireless Networks 3/2017 Go to the issue