Skip to main content
Top
Published in:

01-02-2025

A simple approach for integrating quantum confinement effects into TCAD simulations of tunnel field-effect transistors

Authors: Bui Huu Thai, Chun-Hsing Shih, Nguyen Dang Chien

Published in: Journal of Computational Electronics | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum confinement effects (QCEs) are significant in tunnel field-effect transistors (TFETs) since their operation is based on the mechanism of band-to-band tunneling. This study presents a simple approach for integrating QCEs into the semiclassical TCAD simulations of TFETs. The approach was based on a post-processing computation in which 1D Schrodinger equations were first solved manually, then their solutions were used to modify the conduction and valence band profiles in the 2D TCAD simulations. For each bias condition, only a 1D potential profile at the position of the maximum tunneling generation was adopted to describe the QC through the solutions of Schrodinger equations for electrons and holes. The quantum-simulated results based on this simple method show good agreements with both quantum–mechanical simulations based on a sophisticated approach and experimental data. The analyses also show that the van Dort quantum model available in commercial TCAD simulators is not appropriate for describing QCEs in TFETs. The approach can be practically employed in studying the influences of QCEs on the electrical characteristics, in particular the dependence of QCEs on the body thickness of TFET devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anderson, B.L., Anderson, R.L.: Fundamentals of Semiconductor Devices. McGraw-Hill (2005)MATH Anderson, B.L., Anderson, R.L.: Fundamentals of Semiconductor Devices. McGraw-Hill (2005)MATH
2.
go back to reference Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011)CrossRef Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011)CrossRef
3.
go back to reference Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, Ph.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196905 (2004)CrossRef Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, Ph.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196905 (2004)CrossRef
4.
go back to reference Zhang, Q., Zhao, W., Seabaugh, S.A.: Low-subthreshold swing tunnel transistors. IEEE Electron Device Lett. 27, 297–300 (2006)CrossRef Zhang, Q., Zhao, W., Seabaugh, S.A.: Low-subthreshold swing tunnel transistors. IEEE Electron Device Lett. 27, 297–300 (2006)CrossRef
5.
go back to reference Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28, 743–745 (2007)CrossRef Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28, 743–745 (2007)CrossRef
6.
go back to reference Baek, J.-M., et al.: Vertical homo-junction In0.53Ga0.47As tunneling field-effect transistors with minimum subthreshold swing of 52 mV/decade. Solid-State Electron. 197, 108447 (2022)CrossRefMATH Baek, J.-M., et al.: Vertical homo-junction In0.53Ga0.47As tunneling field-effect transistors with minimum subthreshold swing of 52 mV/decade. Solid-State Electron. 197, 108447 (2022)CrossRefMATH
7.
go back to reference Patnala, M., Yadav, A., Williams, J., Gopinath, A., Nutter, B., Ytterdal, T., Rizkalla, M.: Low power-high speed performance of 8T static RAM cell within GaN TFET, FinFET, and GNRFET technologies—A review. Solid-State Electron. 163, 107665 (2020)CrossRef Patnala, M., Yadav, A., Williams, J., Gopinath, A., Nutter, B., Ytterdal, T., Rizkalla, M.: Low power-high speed performance of 8T static RAM cell within GaN TFET, FinFET, and GNRFET technologies—A review. Solid-State Electron. 163, 107665 (2020)CrossRef
8.
go back to reference Bhattacharya, S., Tripathi, S.L., Kamboj, V.K.: Design of tunnel FET architectures for low power application using improved chimp optimizer algorithm. Eng. Comput. 39, 1415–1458 (2023)CrossRefMATH Bhattacharya, S., Tripathi, S.L., Kamboj, V.K.: Design of tunnel FET architectures for low power application using improved chimp optimizer algorithm. Eng. Comput. 39, 1415–1458 (2023)CrossRefMATH
10.
go back to reference Nayfeh, O.M., Hoyt, J.L., Antoniadis, D.A.: Strained-Si1-xGex/Si band-to-band tunneling transistors: Impact of tunnel junction germanium composition and doping concentration on switching behavior. IEEE Trans. Electron Devices 56, 2264–2269 (2009)CrossRef Nayfeh, O.M., Hoyt, J.L., Antoniadis, D.A.: Strained-Si1-xGex/Si band-to-band tunneling transistors: Impact of tunnel junction germanium composition and doping concentration on switching behavior. IEEE Trans. Electron Devices 56, 2264–2269 (2009)CrossRef
11.
go back to reference Chien, N.D., Vinh, L.T., Kien, N.V., Hsia, J.-K., Kang, T.-S., Shih, C.-H.: Proper determination of tunnel model parameters for indirect band-to-band tunneling in compressively strained Si1-xGex TFETs. International Symposium on Next-Generation Electronics, pp. 67–70 (2013). Chien, N.D., Vinh, L.T., Kien, N.V., Hsia, J.-K., Kang, T.-S., Shih, C.-H.: Proper determination of tunnel model parameters for indirect band-to-band tunneling in compressively strained Si1-xGex TFETs. International Symposium on Next-Generation Electronics, pp. 67–70 (2013).
12.
go back to reference Cheng, Q., Khandelwal, S., Zeng, Y.: A physically-based model of vertical TFET - Part II: Drain current model. IEEE Trans. Electron Devices 69, 3974–3982 (2022)CrossRefMATH Cheng, Q., Khandelwal, S., Zeng, Y.: A physically-based model of vertical TFET - Part II: Drain current model. IEEE Trans. Electron Devices 69, 3974–3982 (2022)CrossRefMATH
13.
go back to reference Mohammadi, S., Khaveh, H.R.T.: An analytical model for double-gate tunnel FETs considering the junctions depletion regions and the channel mobile charge carriers. IEEE Trans. Electron Devices 64, 1276–1284 (2017)CrossRef Mohammadi, S., Khaveh, H.R.T.: An analytical model for double-gate tunnel FETs considering the junctions depletion regions and the channel mobile charge carriers. IEEE Trans. Electron Devices 64, 1276–1284 (2017)CrossRef
14.
go back to reference Padilla, J.L., Gamiz, F., Godoy, A.: A simple approach to quantum confinement in tunneling field-effect transistors. IEEE Electron Device Lett. 33, 1342–1344 (2012)CrossRefMATH Padilla, J.L., Gamiz, F., Godoy, A.: A simple approach to quantum confinement in tunneling field-effect transistors. IEEE Electron Device Lett. 33, 1342–1344 (2012)CrossRefMATH
15.
go back to reference Beneventi, G.B., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Optimization of a pocketed dual-metal-gate TFET by means of TCAD simulations accounting for quantization-induced bandgap widening. IEEE Trans. Electron Devices 62, 44–51 (2015)CrossRefMATH Beneventi, G.B., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Optimization of a pocketed dual-metal-gate TFET by means of TCAD simulations accounting for quantization-induced bandgap widening. IEEE Trans. Electron Devices 62, 44–51 (2015)CrossRefMATH
16.
go back to reference Baccarani, G., Gnani, E., Gnudi, A., Reggiani, S., Rudan, M.: Theoretical foundations of the quantum drift-diffusion and density-gradient models. Solid-State Electron. 52, 526–532 (2008)CrossRefMATH Baccarani, G., Gnani, E., Gnudi, A., Reggiani, S., Rudan, M.: Theoretical foundations of the quantum drift-diffusion and density-gradient models. Solid-State Electron. 52, 526–532 (2008)CrossRefMATH
17.
go back to reference Alper, C., Lattanzio, L., Michielis, L.D., Palestri, P., Selmi, L., Ionescu, A.M.: Quantum mechanical study of the germanium electron–hole bilayer tunnel FET. IEEE Trans. Electron Devices 60, 2754–2760 (2013)CrossRef Alper, C., Lattanzio, L., Michielis, L.D., Palestri, P., Selmi, L., Ionescu, A.M.: Quantum mechanical study of the germanium electron–hole bilayer tunnel FET. IEEE Trans. Electron Devices 60, 2754–2760 (2013)CrossRef
18.
go back to reference Vandenberghe, W.G., Soree, B., Magnus, W., Fischetti, M.V., Verhulst, A.S., Groeseneken, G.: Two-dimensional quantum mechanical modeling of band-to-band tunneling in indirect semiconductors. International Electron Devices Meeting, pp. 1–4 (2011). Vandenberghe, W.G., Soree, B., Magnus, W., Fischetti, M.V., Verhulst, A.S., Groeseneken, G.: Two-dimensional quantum mechanical modeling of band-to-band tunneling in indirect semiconductors. International Electron Devices Meeting, pp. 1–4 (2011).
19.
go back to reference van Dort, M.J., Woerlee, P.H., Walker, A.J.: A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions. Solid-State Electron. 37, 411–414 (1994)CrossRef van Dort, M.J., Woerlee, P.H., Walker, A.J.: A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions. Solid-State Electron. 37, 411–414 (1994)CrossRef
20.
go back to reference Taurus Medici User Guide, Version R-2020.09: Synopsys Inc. (2020). Taurus Medici User Guide, Version R-2020.09: Synopsys Inc. (2020).
21.
go back to reference Chien, N.D., Thai, B.H., Shih, C.-H.: Thin-body effects in double-gate tunnel field-effect transistors. J. Phys. D Appl. Phys. 57, 215301 (2024)CrossRefMATH Chien, N.D., Thai, B.H., Shih, C.-H.: Thin-body effects in double-gate tunnel field-effect transistors. J. Phys. D Appl. Phys. 57, 215301 (2024)CrossRefMATH
22.
go back to reference Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice Hall (1994)MATH Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice Hall (1994)MATH
23.
go back to reference Sitnitsky, A.E.: Analytic calculation of ground state splitting in symmetric double well potential. Comput. Theor. Chem. 1138, 15–22 (2018)CrossRefMATH Sitnitsky, A.E.: Analytic calculation of ground state splitting in symmetric double well potential. Comput. Theor. Chem. 1138, 15–22 (2018)CrossRefMATH
24.
go back to reference Rendon, M., Cao, C., Landazuri, K., Garzon, E., Procel, L.M., Taco, R.: Performance benchmarking of TFET and FinFET digital circuits from a synthesis-based perspective. Electronics 11, 632 (2022)CrossRef Rendon, M., Cao, C., Landazuri, K., Garzon, E., Procel, L.M., Taco, R.: Performance benchmarking of TFET and FinFET digital circuits from a synthesis-based perspective. Electronics 11, 632 (2022)CrossRef
25.
go back to reference Wan, J., Royer, C.L., Zaslavsky, A., Cristoloveanu, S.: Tunneling FETs on SOI: Suppression of ambipolar leakage, low-frequency noise behavior, and modeling. Solid-State Electron. 65–66, 226–233 (2011)CrossRef Wan, J., Royer, C.L., Zaslavsky, A., Cristoloveanu, S.: Tunneling FETs on SOI: Suppression of ambipolar leakage, low-frequency noise behavior, and modeling. Solid-State Electron. 65–66, 226–233 (2011)CrossRef
26.
go back to reference Vandenberghe, W.G., Soree, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98, 143503 (2011)CrossRef Vandenberghe, W.G., Soree, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98, 143503 (2011)CrossRef
27.
go back to reference Hemanjaneyulu, K., Shrivastava, M.: Fin enabled area scaled tunnel FET. IEEE Trans. Electron Devices 62, 3184–3191 (2015)CrossRef Hemanjaneyulu, K., Shrivastava, M.: Fin enabled area scaled tunnel FET. IEEE Trans. Electron Devices 62, 3184–3191 (2015)CrossRef
28.
go back to reference Cherik, I.C., Mohammadi, S., Orouji, A.A.: Switching performance enhancement in nanotube double-gate tunneling field-effect transistor with germanium source regions. IEEE Trans. Electron Devices 69, 364–369 (2022)CrossRef Cherik, I.C., Mohammadi, S., Orouji, A.A.: Switching performance enhancement in nanotube double-gate tunneling field-effect transistor with germanium source regions. IEEE Trans. Electron Devices 69, 364–369 (2022)CrossRef
29.
go back to reference Shih, C.-H., Chien, N.D.: Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors. J. Appl. Phys. 115, 044501 (2014)CrossRefMATH Shih, C.-H., Chien, N.D.: Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors. J. Appl. Phys. 115, 044501 (2014)CrossRefMATH
Metadata
Title
A simple approach for integrating quantum confinement effects into TCAD simulations of tunnel field-effect transistors
Authors
Bui Huu Thai
Chun-Hsing Shih
Nguyen Dang Chien
Publication date
01-02-2025
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2025
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02253-7