Skip to main content
Top
Published in:

10-12-2024 | Research

A simple method for solving damped Duffing oscillators

Authors: Stylianos Vasileios Kontomaris, Vassilis Alimisis, Anna Malamou, Georgios Chliveros, Christos Dimas

Published in: Meccanica | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the accuracy of extending He’s frequency–amplitude equation to the damped Duffing oscillator. Exact numerical solutions are compared with analytical results obtained by extending He’s equation to damped oscillators for various values of amplitude (A) and damping coefficient (c). A simulation of the damped Duffing oscillator using a novel combination of two electrical circuits is also conducted, providing a real-world example of nonlinear oscillation. The oscillation period, calculated using He’s equation, is accurate for Ao < 1, where Ao represents the initial amplitude, regardless of c. The analytic solution is accurate only for Ao < 1 and c > 0.1. For smaller damping coefficients, discrepancies arise due to slow amplitude reduction and cumulative period calculation errors over time, necessitating a correction factor. For larger damping coefficients, the system quickly approaches the harmonic damping range, resulting in minor errors. In conclusion, the limits of applicability of He’s frequency–amplitude equation for damped Duffing oscillators were determined, and appropriate modifications were introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abouelregal AE, Mohammad-Sedighi H, Faghidian SA, Shirazi AH (2021) Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load. Fact Univ Ser Mech 19:633–656MATH Abouelregal AE, Mohammad-Sedighi H, Faghidian SA, Shirazi AH (2021) Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load. Fact Univ Ser Mech 19:633–656MATH
2.
go back to reference Sedighi HM, Shirazi KH (2015) Dynamic pull-in instability of double-sided actuated nano-torsional switches. Acta Mech Solida Sin 28:91–101MATH Sedighi HM, Shirazi KH (2015) Dynamic pull-in instability of double-sided actuated nano-torsional switches. Acta Mech Solida Sin 28:91–101MATH
3.
go back to reference Anjum N, He JH (2020) Two modifications of the homotopy perturbation method for nonlinear oscillators. J Appl Comput Mech 6:1420–1425MATH Anjum N, He JH (2020) Two modifications of the homotopy perturbation method for nonlinear oscillators. J Appl Comput Mech 6:1420–1425MATH
4.
go back to reference Anjum N, He JH (2020) Homotopy perturbation method forN/MEMSoscillators Math. Meth Appl Sci 2020:1–15MATH Anjum N, He JH (2020) Homotopy perturbation method forN/MEMSoscillators Math. Meth Appl Sci 2020:1–15MATH
5.
go back to reference Anjum N, He JH (2020) Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and microelectromechanical systems’ oscillators particularly Int. J Mod Phys 34:2050313MATH Anjum N, He JH (2020) Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and microelectromechanical systems’ oscillators particularly Int. J Mod Phys 34:2050313MATH
6.
go back to reference Qie N, Houa WF, He JH (2021) The fastest insight into the large amplitude vibration of a string. Rep Mech Eng 2:1–5MATH Qie N, Houa WF, He JH (2021) The fastest insight into the large amplitude vibration of a string. Rep Mech Eng 2:1–5MATH
7.
go back to reference Hosen MA, Chowdhury MSH (2015) A new reliable analytical solution for strongly nonlinear oscillator with cubic and harmonic restoring force. Res Phys 5:111–114MATH Hosen MA, Chowdhury MSH (2015) A new reliable analytical solution for strongly nonlinear oscillator with cubic and harmonic restoring force. Res Phys 5:111–114MATH
8.
go back to reference Kontomaris SV, Malamou A (2022) Exploring oscillations with a nonlinear restoring force. Eur J Phys 43:015006MATH Kontomaris SV, Malamou A (2022) Exploring oscillations with a nonlinear restoring force. Eur J Phys 43:015006MATH
9.
go back to reference Xu L (2007) Application of He’s parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire. Phys Lett A 368:259–262MATH Xu L (2007) Application of He’s parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire. Phys Lett A 368:259–262MATH
10.
go back to reference Li S, Niu J, Li X (2018) Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method. Chin Phys B 27:120502MATH Li S, Niu J, Li X (2018) Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method. Chin Phys B 27:120502MATH
11.
go back to reference He JH, Amer TS, Elnaggar S et al (2021) Periodic property and instability of a rotating pendulum system. Axioms 10:191MATH He JH, Amer TS, Elnaggar S et al (2021) Periodic property and instability of a rotating pendulum system. Axioms 10:191MATH
12.
go back to reference Ju P, Xue X (2014) Global residue harmonic balance method to periodic solutions of a class of strongly nonlinear oscillators. Appl Math Model 38:6144–6152MathSciNetMATH Ju P, Xue X (2014) Global residue harmonic balance method to periodic solutions of a class of strongly nonlinear oscillators. Appl Math Model 38:6144–6152MathSciNetMATH
13.
go back to reference Wu B, Liu W, Chen X et al (2017) Asymptotic analysis and accurate approximate solutions for strongly nonlinear conservative symmetric oscillators. Appl Math Model 49:243–254MathSciNetMATH Wu B, Liu W, Chen X et al (2017) Asymptotic analysis and accurate approximate solutions for strongly nonlinear conservative symmetric oscillators. Appl Math Model 49:243–254MathSciNetMATH
14.
go back to reference He JH, Yang Q, He CH et al (2021) A simple frequency formulation for the tangent oscillator. Axioms 10:320MATH He JH, Yang Q, He CH et al (2021) A simple frequency formulation for the tangent oscillator. Axioms 10:320MATH
15.
go back to reference Tian Y (2022) Frequency formula for a class of fractal vibration system. Rep Mech Eng 3:55–61MATH Tian Y (2022) Frequency formula for a class of fractal vibration system. Rep Mech Eng 3:55–61MATH
16.
17.
go back to reference Mickens RE (2010) Truly nonlinear oscillations. World Scientific Publishing, New JerseyMATH Mickens RE (2010) Truly nonlinear oscillations. World Scientific Publishing, New JerseyMATH
18.
go back to reference He JH, Wu XH (2007) Variational iteration method: new development and applications. Comput Math Appl 54:881–894MathSciNetMATH He JH, Wu XH (2007) Variational iteration method: new development and applications. Comput Math Appl 54:881–894MathSciNetMATH
19.
go back to reference Wu H, Gand HY (2017) On variational iteration method for fractional calculus. Therm Sci 21:1707–1712MATH Wu H, Gand HY (2017) On variational iteration method for fractional calculus. Therm Sci 21:1707–1712MATH
20.
go back to reference Liao SJ, Cheung AT (1998) Application of homotopy analysis method in nonlinear oscillations ASME. J Appl Mech 65:914–922MathSciNetMATH Liao SJ, Cheung AT (1998) Application of homotopy analysis method in nonlinear oscillations ASME. J Appl Mech 65:914–922MathSciNetMATH
21.
go back to reference Zhang GQ, Wu ZQ (2019) Homotopy analysis method for approximations of duffing oscillator with dual frequency excitations. Chaos Soliton Fract 127:342–353MathSciNetMATH Zhang GQ, Wu ZQ (2019) Homotopy analysis method for approximations of duffing oscillator with dual frequency excitations. Chaos Soliton Fract 127:342–353MathSciNetMATH
22.
go back to reference Wu Y, He JH (2018) Homotopy perturbation method for nonlinear oscillators with coordinate-dependent mass. Results Phys 10:270–271MATH Wu Y, He JH (2018) Homotopy perturbation method for nonlinear oscillators with coordinate-dependent mass. Results Phys 10:270–271MATH
23.
go back to reference He JH, El-Dib YO, Mady AA (2021) Homotopy perturbation method for the fractal Toda oscillator. Fract Fract 5:93MATH He JH, El-Dib YO, Mady AA (2021) Homotopy perturbation method for the fractal Toda oscillator. Fract Fract 5:93MATH
24.
go back to reference Anjum N, He JH, Ain QT et al (2021) Li-He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system. Fact Univ Ser Mech 19:601–612MATH Anjum N, He JH, Ain QT et al (2021) Li-He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system. Fact Univ Ser Mech 19:601–612MATH
25.
go back to reference He JH, El-Dib YO (2021) The enhanced homotopy perturbation method for axial vibration of strings. Fact Univ Ser Mech 19:735–750MATH He JH, El-Dib YO (2021) The enhanced homotopy perturbation method for axial vibration of strings. Fact Univ Ser Mech 19:735–750MATH
26.
go back to reference Belendez A, Hernandez A, Belendez T (2007) Asymptotic representation of the period for the nonlinear oscillator. J Sound Vib 299:403–408MathSciNetMATH Belendez A, Hernandez A, Belendez T (2007) Asymptotic representation of the period for the nonlinear oscillator. J Sound Vib 299:403–408MathSciNetMATH
27.
go back to reference Cveticanin L, Kovacic I, Rakaric Z (2010) Asymptotic methods for vibrations of the pure non-integer order oscillator. Comp Math Appl 60:2616–2628MathSciNetMATH Cveticanin L, Kovacic I, Rakaric Z (2010) Asymptotic methods for vibrations of the pure non-integer order oscillator. Comp Math Appl 60:2616–2628MathSciNetMATH
28.
go back to reference Molla MHU, Alam MS (2017) Higher accuracy analytical approximations to nonlinear oscillators with discontinuity by energy balance method. Results Phys 7:2104–2110MATH Molla MHU, Alam MS (2017) Higher accuracy analytical approximations to nonlinear oscillators with discontinuity by energy balance method. Results Phys 7:2104–2110MATH
29.
go back to reference Ebaid AE (2010) Approximate periodic solutions for the non-linear relativistic harmonic oscillator via differential transformation method. Commun Nonlinear Sci Num Simul 15:1921–1927MathSciNetMATH Ebaid AE (2010) Approximate periodic solutions for the non-linear relativistic harmonic oscillator via differential transformation method. Commun Nonlinear Sci Num Simul 15:1921–1927MathSciNetMATH
30.
go back to reference Wang SQ, He JH (2008) Nonlinear oscillator with discontinuity by parameter expansion method. Chaos Soliton Fract 35:688–691MATH Wang SQ, He JH (2008) Nonlinear oscillator with discontinuity by parameter expansion method. Chaos Soliton Fract 35:688–691MATH
31.
go back to reference SedighiHM SKH, Noghrehabadi AR et al (2012) Asymptotic investigation of buckled beam nonlinear vibration. IJST-T Mech Eng 36:107–116MATH SedighiHM SKH, Noghrehabadi AR et al (2012) Asymptotic investigation of buckled beam nonlinear vibration. IJST-T Mech Eng 36:107–116MATH
32.
go back to reference He JH, Anjum N, Skrzypacz P (2021) Avariational principle for a nonlinear oscillator arising in the microelectromechanical system. J Appl Comput Mech 7:78–83MATH He JH, Anjum N, Skrzypacz P (2021) Avariational principle for a nonlinear oscillator arising in the microelectromechanical system. J Appl Comput Mech 7:78–83MATH
33.
go back to reference He JH, Houa WF, Qie N et al (2021) Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. Facta Univ Ser Mech 19:199–208MATH He JH, Houa WF, Qie N et al (2021) Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. Facta Univ Ser Mech 19:199–208MATH
34.
go back to reference Hosen MA, Ismail GM, Yildirim A et al (2020) A modified energy balance method to obtain higher-order approximations to the oscillators with cubic and harmonic restoring force. J Appl Comput Mech 6:320–331MATH Hosen MA, Ismail GM, Yildirim A et al (2020) A modified energy balance method to obtain higher-order approximations to the oscillators with cubic and harmonic restoring force. J Appl Comput Mech 6:320–331MATH
35.
go back to reference El-Dib YO, Matoog RT (2021) The rank upgrading technique for a harmonic restoring force of nonlinear oscillators. J Appl Comput Mech 7:782–789MATH El-Dib YO, Matoog RT (2021) The rank upgrading technique for a harmonic restoring force of nonlinear oscillators. J Appl Comput Mech 7:782–789MATH
36.
go back to reference Kontomaris S V Mazi I, Malamou A (2024) A note on a simple equation for solving nonlinear undamped oscillations. J Vib Eng Technol Kontomaris S V Mazi I, Malamou A (2024) A note on a simple equation for solving nonlinear undamped oscillations. J Vib Eng Technol
37.
go back to reference Kontomaris SV, Mazi I, Chliveros G, Malamou A (2024) Generic numerical and analytical methods for solving nonlinear oscillators. Phys Scr 99:025231MATH Kontomaris SV, Mazi I, Chliveros G, Malamou A (2024) Generic numerical and analytical methods for solving nonlinear oscillators. Phys Scr 99:025231MATH
38.
go back to reference Kontomaris SV, Chliveros G, Malamou A (2023) Approximate solutions for undamped nonlinear oscillations using He’s formulation. J 6:140–151MATH Kontomaris SV, Chliveros G, Malamou A (2023) Approximate solutions for undamped nonlinear oscillations using He’s formulation. J 6:140–151MATH
39.
go back to reference Big-Alabo A (2020) Approximate periodic solution for the large-amplitude oscillations of a simple pendulum. Int J Mech Eng Educ 48:335–350MATH Big-Alabo A (2020) Approximate periodic solution for the large-amplitude oscillations of a simple pendulum. Int J Mech Eng Educ 48:335–350MATH
40.
go back to reference He JH (2019) The simplest approach to nonlinear oscillators. Results Phys 15:102546MATH He JH (2019) The simplest approach to nonlinear oscillators. Results Phys 15:102546MATH
41.
go back to reference Chen B, Lu J, Xia Z (2023) Numerical investigation of the fractal capillary oscillator. J Low Freq Noise Vib Act 42:579–588MATH Chen B, Lu J, Xia Z (2023) Numerical investigation of the fractal capillary oscillator. J Low Freq Noise Vib Act 42:579–588MATH
42.
go back to reference Jin X, Liu M, Pan F, Li Y, Fan J (2019) Low frequency of a deforming capillary vibration, part 1: mathematical model. J Low Freq Noise Vib Act 38:1676–1680MATH Jin X, Liu M, Pan F, Li Y, Fan J (2019) Low frequency of a deforming capillary vibration, part 1: mathematical model. J Low Freq Noise Vib Act 38:1676–1680MATH
43.
go back to reference Big-Alabo A, Ezekwem C (2021) Periodic solution of capillary vibration in lotus-rhizome-node-like deforming structure using quasistatic quintication method. Uniport J Eng Sci Res 5:131–139MATH Big-Alabo A, Ezekwem C (2021) Periodic solution of capillary vibration in lotus-rhizome-node-like deforming structure using quasistatic quintication method. Uniport J Eng Sci Res 5:131–139MATH
44.
go back to reference Jones BK, Trefan G (2001) The Duffing oscillator: a precise electronic analog chaos demonstrator for the undergraduate laboratory. Am J Phys 69:464–469MATH Jones BK, Trefan G (2001) The Duffing oscillator: a precise electronic analog chaos demonstrator for the undergraduate laboratory. Am J Phys 69:464–469MATH
45.
go back to reference Chen B, Lu J, Xia Z (2023) Numerical investigation of the fractal capillary oscillator. J Low Freq Noise Vib Act 42(2):579–588MATH Chen B, Lu J, Xia Z (2023) Numerical investigation of the fractal capillary oscillator. J Low Freq Noise Vib Act 42(2):579–588MATH
46.
go back to reference Liu Y, Chen H, Chen L (2023) The mechanism of the capillary oscillation and its application to fabrics’ sweat permeability. Front Phys 11:1251608MATH Liu Y, Chen H, Chen L (2023) The mechanism of the capillary oscillation and its application to fabrics’ sweat permeability. Front Phys 11:1251608MATH
47.
go back to reference Kuang W, Wang J, Huang C, Lu L, Gao D, Wang Z, Ge C (2019) Homotopy perturbation method with an auxiliary term for the optimal design of a tangent nonlinear packaging system. J Low Freq Noise Vib Act Control 38:1075–1080MATH Kuang W, Wang J, Huang C, Lu L, Gao D, Wang Z, Ge C (2019) Homotopy perturbation method with an auxiliary term for the optimal design of a tangent nonlinear packaging system. J Low Freq Noise Vib Act Control 38:1075–1080MATH
48.
go back to reference Song HY (2019) A modification of homotopy perturbation method for a hyperbolic tangent oscillator arising in nonlinear packaging system. J Low Freq Noise Vib Active Control 38:914–917MATH Song HY (2019) A modification of homotopy perturbation method for a hyperbolic tangent oscillator arising in nonlinear packaging system. J Low Freq Noise Vib Active Control 38:914–917MATH
49.
go back to reference Big-Alabo A (2018) Periodic solutions of Duffing-type oscillators using continuous piecewise linearization method. Mech Eng Res 8(1):41–52MATH Big-Alabo A (2018) Periodic solutions of Duffing-type oscillators using continuous piecewise linearization method. Mech Eng Res 8(1):41–52MATH
50.
go back to reference Big-Alabo A (2022) Algebraic approximation for the elliptic integral of the first kind: application to pendulum-like and Duffing-type oscillators. Uniport J Eng Sci Res 6:30–38MATH Big-Alabo A (2022) Algebraic approximation for the elliptic integral of the first kind: application to pendulum-like and Duffing-type oscillators. Uniport J Eng Sci Res 6:30–38MATH
51.
go back to reference Salas AH (2022) An elementary solution to a Duffing equation. Sci World J 2022:2357258MATH Salas AH (2022) An elementary solution to a Duffing equation. Sci World J 2022:2357258MATH
52.
go back to reference Salas AH, Castillo HEJ (2014) Exact solution to Duffing equation and the pendulum equation. Appl Math Sci 8(176):8781–8789MATH Salas AH, Castillo HEJ (2014) Exact solution to Duffing equation and the pendulum equation. Appl Math Sci 8(176):8781–8789MATH
53.
go back to reference Al-Jawary M, Abd-AL-Razaq S (2016) Analytic and numerical solution for Duffing equations. Int J Basic Appl Sci 5(2):115–119MATH Al-Jawary M, Abd-AL-Razaq S (2016) Analytic and numerical solution for Duffing equations. Int J Basic Appl Sci 5(2):115–119MATH
54.
go back to reference Ismail GM, Abul-Ez M, Zayed M, Ahmad H, El-Moshneb M (2022) Highly accurate analytical solution for free vibrations of strongly nonlinear Duffing oscillator. J Low Freq Noise Vib Act Control 41(1):223–229MATH Ismail GM, Abul-Ez M, Zayed M, Ahmad H, El-Moshneb M (2022) Highly accurate analytical solution for free vibrations of strongly nonlinear Duffing oscillator. J Low Freq Noise Vib Act Control 41(1):223–229MATH
55.
go back to reference El-Naggar AM, Ismail GM (2016) Analytical solution of strongly nonlinear Duffing oscillators. Alexandria Eng J 55(2):1581–1585MATH El-Naggar AM, Ismail GM (2016) Analytical solution of strongly nonlinear Duffing oscillators. Alexandria Eng J 55(2):1581–1585MATH
56.
go back to reference El-Dib YO (2021) The frequency estimation for non-conservative nonlinear oscillation. ZAMM 101(12):e202100187MathSciNetMATH El-Dib YO (2021) The frequency estimation for non-conservative nonlinear oscillation. ZAMM 101(12):e202100187MathSciNetMATH
57.
go back to reference Johannessen K (2015) The Duffing oscillator with damping. Eur J Phys 36:065020MATH Johannessen K (2015) The Duffing oscillator with damping. Eur J Phys 36:065020MATH
58.
go back to reference Johannessen K (2017) The Duffing oscillator with damping for a softening potential. Int J Appl Comput Math 3:3805–3816MathSciNetMATH Johannessen K (2017) The Duffing oscillator with damping for a softening potential. Int J Appl Comput Math 3:3805–3816MathSciNetMATH
59.
go back to reference Cveticanin L, Ismail GM (2019) Higher-order approximate periodic solution for the oscillator with strong nonlinearity of polynomial type. Eur Phys J Plus 134:266MATH Cveticanin L, Ismail GM (2019) Higher-order approximate periodic solution for the oscillator with strong nonlinearity of polynomial type. Eur Phys J Plus 134:266MATH
60.
go back to reference MacLennan B J (2007) A review of analog computing. Department of Electrical Engineering & Computer Science, University of Tennessee, Technical Report UT-CS-07–601 (September), 19798–19807 MacLennan B J (2007) A review of analog computing. Department of Electrical Engineering & Computer Science, University of Tennessee, Technical Report UT-CS-07–601 (September), 19798–19807
61.
go back to reference Haensch W, Gokmen T, Puri R (2018) The next generation of deep learning hardware: analog computing. Proc IEEE 107(1):108–122MATH Haensch W, Gokmen T, Puri R (2018) The next generation of deep learning hardware: analog computing. Proc IEEE 107(1):108–122MATH
62.
go back to reference Ulmann B (2013) Analog computing. Oldenbourg Wissenschaftsverlag Verlag. Ulmann B (2013) Analog computing. Oldenbourg Wissenschaftsverlag Verlag.
63.
go back to reference Garg S, Lou J, Jain A, Guo Z, Shastri BJ, Nahmias M (2022) Dynamic precision analog computing for neural networks. IEEE J Sel Top Quantum Electron 29(2):1–12 Garg S, Lou J, Jain A, Guo Z, Shastri BJ, Nahmias M (2022) Dynamic precision analog computing for neural networks. IEEE J Sel Top Quantum Electron 29(2):1–12
64.
go back to reference Alimisis V, Eleftheriou NP, Kamperi A, Gennis G, Dimas C, Sotiriadis PP (2023) General methodology for the design of bell-shaped analog-hardware classifiers. Electronics 12(20):4211 Alimisis V, Eleftheriou NP, Kamperi A, Gennis G, Dimas C, Sotiriadis PP (2023) General methodology for the design of bell-shaped analog-hardware classifiers. Electronics 12(20):4211
65.
go back to reference Alimisis V, Gennis G, Dimas C, Gourdouparis M, Sotiriadis PP (2022) An ultra low power analog integrated radial basis function classifier for smart IoT systems. Analog Integr Circ Signal Process 112(2):225–236 Alimisis V, Gennis G, Dimas C, Gourdouparis M, Sotiriadis PP (2022) An ultra low power analog integrated radial basis function classifier for smart IoT systems. Analog Integr Circ Signal Process 112(2):225–236
66.
go back to reference Kumar P, Nandi A, Chakrabartty S, Thakur CS (2022) Process, bias, and temperature scalable cmos analog computing circuits for machine learning. IEEE TCAS-I 70(1):128–141MATH Kumar P, Nandi A, Chakrabartty S, Thakur CS (2022) Process, bias, and temperature scalable cmos analog computing circuits for machine learning. IEEE TCAS-I 70(1):128–141MATH
67.
go back to reference Franco S (2002) Design with operational amplifiers and analog integrated circuits, vol 1988. McGraw-Hill, New YorkMATH Franco S (2002) Design with operational amplifiers and analog integrated circuits, vol 1988. McGraw-Hill, New YorkMATH
68.
go back to reference Tietze U, Schenk C (2012) Advanced electronic circuits. Springer, ChamMATH Tietze U, Schenk C (2012) Advanced electronic circuits. Springer, ChamMATH
69.
70.
go back to reference Johns DA, Martin K (2008) Analog integrated circuit design. Wiley, New JerseyMATH Johns DA, Martin K (2008) Analog integrated circuit design. Wiley, New JerseyMATH
71.
go back to reference Tapashetti P, Gupta A, Mithlesh C, Umesh AS (2012) Design and simulation of op amp integrator and its applications. IJEAT 1(3):12–19 Tapashetti P, Gupta A, Mithlesh C, Umesh AS (2012) Design and simulation of op amp integrator and its applications. IJEAT 1(3):12–19
72.
go back to reference Clayton GB, Winder S (2003) Operational amplifiers. Elsevier, AmsterdamMATH Clayton GB, Winder S (2003) Operational amplifiers. Elsevier, AmsterdamMATH
73.
go back to reference Schaumann R, Mac Elwyn Van Valkenburg X, Xiao H (2001) Design of analog filters, vol 1. Oxford University Press, New YorkMATH Schaumann R, Mac Elwyn Van Valkenburg X, Xiao H (2001) Design of analog filters, vol 1. Oxford University Press, New YorkMATH
74.
go back to reference Ghausi M (1984) Analog active filters. IEEE Trans Circuits Syst 31(1):13–31MATH Ghausi M (1984) Analog active filters. IEEE Trans Circuits Syst 31(1):13–31MATH
75.
go back to reference Castello R, Montecchi F, Rezzi F, Baschirotto A (1995) Low-voltage analog filters IEEE TCAS-I 42(11):827–840 Castello R, Montecchi F, Rezzi F, Baschirotto A (1995) Low-voltage analog filters IEEE TCAS-I 42(11):827–840
76.
go back to reference Dimopoulos HG (2011) Analog electronic filters: theory, design and synthesis. Springer, ChamMATH Dimopoulos HG (2011) Analog electronic filters: theory, design and synthesis. Springer, ChamMATH
77.
go back to reference Yawale S, Yawale S (2022) Operational amplifier. Springer, Singapore Yawale S, Yawale S (2022) Operational amplifier. Springer, Singapore
78.
go back to reference Paterson WL (1963) Multiplication and logarithmic conversion by operational amplifier-transistor circuits. Rev Sci Instrum 34(12):1311–1316MATH Paterson WL (1963) Multiplication and logarithmic conversion by operational amplifier-transistor circuits. Rev Sci Instrum 34(12):1311–1316MATH
79.
go back to reference Kugelstadt T (2004) Integrated logarithmic amplifiers for industrial applications. Analog Appl J Q1:28–30 Kugelstadt T (2004) Integrated logarithmic amplifiers for industrial applications. Analog Appl J Q1:28–30
80.
go back to reference Peyton AJ, Walsh V (1993) Analog electronics with op-amps: a source book of practical circuits. Cambridge University Press, CambridgeMATH Peyton AJ, Walsh V (1993) Analog electronics with op-amps: a source book of practical circuits. Cambridge University Press, CambridgeMATH
81.
go back to reference Salas AHS, Altamirano GC, Sánchez-Chero M (2022) Solution to a damped duffing equation using He’s frequency approach. Sci World J 2022:5009722MATH Salas AHS, Altamirano GC, Sánchez-Chero M (2022) Solution to a damped duffing equation using He’s frequency approach. Sci World J 2022:5009722MATH
82.
go back to reference Ismail GM, El-Moshneb MM, Zayed M (2023) Analytical technique for solving strongly nonlinear oscillator differential equations. Alex Eng J 74:547–557MATH Ismail GM, El-Moshneb MM, Zayed M (2023) Analytical technique for solving strongly nonlinear oscillator differential equations. Alex Eng J 74:547–557MATH
83.
go back to reference Layek GC (2015) Oscillations. In: An introduction to dynamical systems and chaos. Springer, New Delhi Layek GC (2015) Oscillations. In: An introduction to dynamical systems and chaos. Springer, New Delhi
Metadata
Title
A simple method for solving damped Duffing oscillators
Authors
Stylianos Vasileios Kontomaris
Vassilis Alimisis
Anna Malamou
Georgios Chliveros
Christos Dimas
Publication date
10-12-2024
Publisher
Springer Netherlands
Published in
Meccanica / Issue 1/2025
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-024-01912-0

Premium Partners