Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2018

13-08-2018

A Simplified Procedure to Determine Post-necking True Stress–Strain Curve from Uniaxial Tensile Test of Round Metallic Specimen Using DIC

Authors: Surajit Kumar Paul, Satish Roy, S. Sivaprasad, S. Tarafder

Published in: Journal of Materials Engineering and Performance | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Triaxial state of stress is usually generated in the necked zone because of neck geometry, and as a consequence proper correction of true tensile stress–strain curve after necking is mandatory. Various correction factors like Bridgman, Davidenkov and Spiridonova, Siebel and Schwaigere are available in the published literature to calculate true stress from mean axial stress. Similarly true strains can be calculated from the minimum diameters of the round specimen in the necked region for various true stress levels. But experimental determination of correction factors and minimum diameters of the round specimen in the necked region is a cumbersome task. This investigation shows a simplified procedure to determine true strains and the correction factors from digital image correlation-based local strain measurement in the necked region. The present procedure is validated by experimental results of rail steel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Joun, I. Choi, J. Eom, and M. Lee, Finite Element Analysis of Tensile Testing with Emphasis on Necking, Comput. Mater. Sci., 2007, 41(1), p 63–69CrossRef M. Joun, I. Choi, J. Eom, and M. Lee, Finite Element Analysis of Tensile Testing with Emphasis on Necking, Comput. Mater. Sci., 2007, 41(1), p 63–69CrossRef
2.
go back to reference P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw Hill, New York, 1952 P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw Hill, New York, 1952
3.
go back to reference P.W. Bridgman, The Stress Distribution at the Neck of a Tension Specimen, Trans. Am. Soc. Met., 1944, 32, p 553–574 P.W. Bridgman, The Stress Distribution at the Neck of a Tension Specimen, Trans. Am. Soc. Met., 1944, 32, p 553–574
4.
go back to reference F. Zhu, P. Bai, J. Zhang, D. Lei, and X. He, Measurement of True Stress–Strain Curves and Evolution of Plastic Zone of Low Carbon Steel Under Uniaxial Tension Using Digital Image Correlation, Opt. Lasers Eng., 2015, 65, p 81–88CrossRef F. Zhu, P. Bai, J. Zhang, D. Lei, and X. He, Measurement of True Stress–Strain Curves and Evolution of Plastic Zone of Low Carbon Steel Under Uniaxial Tension Using Digital Image Correlation, Opt. Lasers Eng., 2015, 65, p 81–88CrossRef
5.
go back to reference M. Kamaya and M. Kawakubo, A Procedure for Determining the True Stress–Strain Curve Over a Large Range of Strains Using Digital Image Correlation and Finite Element Analysis, Mech. Mater., 2011, 43, p 243–253CrossRef M. Kamaya and M. Kawakubo, A Procedure for Determining the True Stress–Strain Curve Over a Large Range of Strains Using Digital Image Correlation and Finite Element Analysis, Mech. Mater., 2011, 43, p 243–253CrossRef
6.
go back to reference M.S. Joun, J.G. Eom, and M.C. Lee, A New Method for Acquiring True Stress–Strain Curves Over a Large Range of Strains Using a Tensile Test and Finite Element Method, Mech. Mater., 2008, 40, p 586–593CrossRef M.S. Joun, J.G. Eom, and M.C. Lee, A New Method for Acquiring True Stress–Strain Curves Over a Large Range of Strains Using a Tensile Test and Finite Element Method, Mech. Mater., 2008, 40, p 586–593CrossRef
7.
go back to reference G. Mirone, A New Model for the Elastoplastic Characterization and the Stress–Strain Determination on the Necking Section of a Tensile Specimen, Int. J. Solids Struct., 2004, 41(13), p 3545–3565CrossRef G. Mirone, A New Model for the Elastoplastic Characterization and the Stress–Strain Determination on the Necking Section of a Tensile Specimen, Int. J. Solids Struct., 2004, 41(13), p 3545–3565CrossRef
8.
go back to reference Z.L. Zhang, M. Hauge, J. Odegard, and C. Thaulow, Determining True Stress–Strain Curve from Tensile Specimens with Rectangular Cross-Section, Int. J. Solids Struct., 1999, 36, p 3497–3516CrossRef Z.L. Zhang, M. Hauge, J. Odegard, and C. Thaulow, Determining True Stress–Strain Curve from Tensile Specimens with Rectangular Cross-Section, Int. J. Solids Struct., 1999, 36, p 3497–3516CrossRef
9.
go back to reference A. Nasser, A. Yadav, P. Pathak, and T. Altan, Determination of the Flow Stress of Five AHSS Sheet Materials (DP 600, DP 780, DP780-CR, DP 780-HY and TRIP 780) Using the Uniaxial Tensile and the Biaxial Viscous Pressure Bulge (VPB) Tests, J. Mater. Process. Technol., 2010, 210, p 429–436CrossRef A. Nasser, A. Yadav, P. Pathak, and T. Altan, Determination of the Flow Stress of Five AHSS Sheet Materials (DP 600, DP 780, DP780-CR, DP 780-HY and TRIP 780) Using the Uniaxial Tensile and the Biaxial Viscous Pressure Bulge (VPB) Tests, J. Mater. Process. Technol., 2010, 210, p 429–436CrossRef
10.
go back to reference N. Tardif and S. Kyriakides, Determination of Anisotropy and Material Hardening for Aluminum Sheet Metal, Int. J. Solids Struct., 2012, 49(25), p 3496–3506CrossRef N. Tardif and S. Kyriakides, Determination of Anisotropy and Material Hardening for Aluminum Sheet Metal, Int. J. Solids Struct., 2012, 49(25), p 3496–3506CrossRef
11.
go back to reference J.-H. Kim, A. Serpantié, F. Barlat, F. Pierron, and M.-G. Lee, Characterization of the Post-necking Strain Hardening Behavior Using the Virtual Fields Method, Int. J. Solids Struct., 2013, 50, p 3829–3842CrossRef J.-H. Kim, A. Serpantié, F. Barlat, F. Pierron, and M.-G. Lee, Characterization of the Post-necking Strain Hardening Behavior Using the Virtual Fields Method, Int. J. Solids Struct., 2013, 50, p 3829–3842CrossRef
12.
go back to reference M.A. Iadicola, Validation of Uniaxial Data Beyond Uniform Elongation, in Proceedings of 8th the International Conference and Workshop on Numerical Simulation of 3DSheet Metal Forming Processes, AIP Conf. Proc., 2011, 1383, pp 742–749. M.A. Iadicola, Validation of Uniaxial Data Beyond Uniform Elongation, in Proceedings of 8th the International Conference and Workshop on Numerical Simulation of 3DSheet Metal Forming Processes, AIP Conf. Proc., 2011, 1383, pp 742–749.
13.
go back to reference K. Zhao, L. Wang, Y. Chang, and J. Yan, Identification of Post-necking Stress–Strain Curve for Sheet Metals by Inverse Method, Mech. Mater., 2016, 92, p 107–118CrossRef K. Zhao, L. Wang, Y. Chang, and J. Yan, Identification of Post-necking Stress–Strain Curve for Sheet Metals by Inverse Method, Mech. Mater., 2016, 92, p 107–118CrossRef
14.
go back to reference X. Zhuang, Z. Zhao, H. Li, and H. Xiang, Experimental Methodology for Obtaining the Flow Curve of Sheet Materials in a Wide Range of Strains, Steel Res. Int., 2013, 84(2), p 146–154CrossRef X. Zhuang, Z. Zhao, H. Li, and H. Xiang, Experimental Methodology for Obtaining the Flow Curve of Sheet Materials in a Wide Range of Strains, Steel Res. Int., 2013, 84(2), p 146–154CrossRef
15.
go back to reference L. Wang and W. Tong, Identification of Post-necking Strain Hardening Behavior of Thin Sheet Metals from Image-Based Surface Strain Data in Uniaxial Tension Tests, Int. J. Solids Struct., 2015, 75-76, p 12–31CrossRef L. Wang and W. Tong, Identification of Post-necking Strain Hardening Behavior of Thin Sheet Metals from Image-Based Surface Strain Data in Uniaxial Tension Tests, Int. J. Solids Struct., 2015, 75-76, p 12–31CrossRef
16.
go back to reference S.K. Paul, S. Roy, S. Sivaprasad, H.N. Bar, and S. Tarafder, Local Ratcheting Response in Dissimilar Metal Weld Joint: Characterization Through Digital Image Correlation Technique, J. Mater. Eng. Perform., 2017, 26(10), p 4953–4963CrossRef S.K. Paul, S. Roy, S. Sivaprasad, H.N. Bar, and S. Tarafder, Local Ratcheting Response in Dissimilar Metal Weld Joint: Characterization Through Digital Image Correlation Technique, J. Mater. Eng. Perform., 2017, 26(10), p 4953–4963CrossRef
17.
go back to reference H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates, Local Plastic Strain Evolution in a High Strength Dual-Phase Steel, Mater. Sci. Eng. A, 2010, 527(18–19), p 5026–5032CrossRef H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates, Local Plastic Strain Evolution in a High Strength Dual-Phase Steel, Mater. Sci. Eng. A, 2010, 527(18–19), p 5026–5032CrossRef
18.
go back to reference H. Ghadbeigi, C. Pinna, and S. Celotto, Failure Mechanisms in DP600 Steel: Initiation, Evolution and Fracture, Mater. Sci. Eng. A, 2013, 588, p 420–431CrossRef H. Ghadbeigi, C. Pinna, and S. Celotto, Failure Mechanisms in DP600 Steel: Initiation, Evolution and Fracture, Mater. Sci. Eng. A, 2013, 588, p 420–431CrossRef
19.
go back to reference L. Dong, S. Li, and J. He, Ductile Fracture Initiation of Anisotropic Metal Sheets, J. Mater. Eng. Perform., 2017, 26(7), p 3285–3298CrossRef L. Dong, S. Li, and J. He, Ductile Fracture Initiation of Anisotropic Metal Sheets, J. Mater. Eng. Perform., 2017, 26(7), p 3285–3298CrossRef
20.
go back to reference Z. Chen, G. Fang, and J.-Q. Zhao, Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures, J. Mater. Eng. Perform., 2017, 26(9), p 4626–4637CrossRef Z. Chen, G. Fang, and J.-Q. Zhao, Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures, J. Mater. Eng. Perform., 2017, 26(9), p 4626–4637CrossRef
21.
go back to reference G. Leroy, J. Embury, G. Edwards et al., A Model of Ductile Fracture Based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29, p 1509–1522CrossRef G. Leroy, J. Embury, G. Edwards et al., A Model of Ductile Fracture Based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29, p 1509–1522CrossRef
22.
go back to reference E. Siebel and S. Schwaigere, Mechanics of Tensile Test, Arch Eisenhuttenwes., 1948, 19, p 145–152 (in German) E. Siebel and S. Schwaigere, Mechanics of Tensile Test, Arch Eisenhuttenwes., 1948, 19, p 145–152 (in German)
23.
go back to reference N.N. Davidenkov and N.I. Spiridonova, Mechanical Method of Testing Analysis of the State of Stress in the Neck of a Tension Test Specimen, Proc. Am. Soc. Test. Mater., 1947, 46, p 1147–1158 N.N. Davidenkov and N.I. Spiridonova, Mechanical Method of Testing Analysis of the State of Stress in the Neck of a Tension Test Specimen, Proc. Am. Soc. Test. Mater., 1947, 46, p 1147–1158
24.
go back to reference Z. Ling, Uniaxial True Stress–Strain After Necking, AMP J. Technol., 1996, 5, p 37–48 Z. Ling, Uniaxial True Stress–Strain After Necking, AMP J. Technol., 1996, 5, p 37–48
25.
go back to reference R.B. Joshi, A.E. Bayoumi, and H.M. Zbib, The Use of Digital Processing in Studying Stretch-Forming Sheet Metal, Exp. Mech., 1992, 32(2), p 117–123CrossRef R.B. Joshi, A.E. Bayoumi, and H.M. Zbib, The Use of Digital Processing in Studying Stretch-Forming Sheet Metal, Exp. Mech., 1992, 32(2), p 117–123CrossRef
Metadata
Title
A Simplified Procedure to Determine Post-necking True Stress–Strain Curve from Uniaxial Tensile Test of Round Metallic Specimen Using DIC
Authors
Surajit Kumar Paul
Satish Roy
S. Sivaprasad
S. Tarafder
Publication date
13-08-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3566-5

Other articles of this Issue 9/2018

Journal of Materials Engineering and Performance 9/2018 Go to the issue

Premium Partners