Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

14-04-2015 | Methodologies and Application | Issue 7/2016

Soft Computing 7/2016

A soft image representation approach by exploiting local neighborhood structure of self-organizing map (SOM)

Journal:
Soft Computing > Issue 7/2016
Author:
Md Mahmudur Rahman
Important notes
Communicated by V. Loia.

Abstract

When images are described with visual words based on vector quantization of low-level color, texture, and edge-related visual features of image regions, it is usually referred as “bag-of-visual words (BoVW)”-based presentation. Although it has proved to be effective for image representation similar to document representation in text retrieval, the hard image encoding approach based on one-to-one mapping of regions to visual words is not expressive enough to characterize the image contents with higher level semantics and prone to quantization error. Each word is considered independent of all the words in this model. However, it is found that the words are related and their similarity of occurrence in documents can reflect the underlying semantic relations between them. To consider this, a soft image representation scheme is proposed by spreading each region’s membership values through a local fuzzy membership function in a neighborhood to all the words in a codebook generated by self-organizing map (SOM). The topology preserving property of the SOM map is exploited to generate a local membership function. A systematic evaluation of retrieval results of the proposed soft representation on two different image (natural photographic and medical) collections has shown significant improvement in precision at different recall levels when compared to different low-level and “BoVW”-based feature that consider only probability of occurrence (or presence/absence) of a word.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2016

Soft Computing 7/2016 Go to the issue

Premium Partner

    Image Credits