Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

11-03-2020 | Issue 4/2020

Wireless Personal Communications 4/2020

A Solar Energy Forecast Model Using Neural Networks: Application for Prediction of Power for Wireless Sensor Networks in Precision Agriculture

Journal:
Wireless Personal Communications > Issue 4/2020
Authors:
Sukham Dhillon, Charu Madhu, Daljeet Kaur, Sarvjit Singh
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Wireless sensor networks employed in field monitoring have severe energy and memory constraints. Energy harvested from the natural resources such as solar energy is highly intermittent. However, its future values can be predicted with reasonable accuracy. Forecasting future values of solar irradiance prolongs the wireless sensor networks lifetime by enabling efficient task scheduling. In this paper, we propose a model for forecasting solar energy for wireless sensor networks using feed forward neural networks and compare it with other models both in terms of accuracy and memory occupancy. Intensity of solar radiations is predicted 24 h ahead based on temperature, pressure, relative humidity, dew point, wind speed, zenith angle, hour of the day and historical values of solar intensity. The dataset of 4 months is used from National Renewable Energy Laboratory. The results indicate that the proposed model is quite efficient with coefficient of correlation (R2) and RMSE values 98.052 and 56.61 respectively.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

Wireless Personal Communications 4/2020 Go to the issue

BriefCommunication

Dark Web: A Web of Crimes