Skip to main content
Top
Published in:

2023 | OriginalPaper | Chapter

A Spatial Markov Chain Cellular Automata Model for the Spread of Viruses

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper a Spatial Markov Chain Cellular Automata model for the spread of viruses is proposed. The model is based on a graph with connected nodes, where the nodes represent individuals and the connections between the nodes denote the relations between humans. In this way, a graph is connected where the probability of infectious spread from person to person is determined by the intensity of interpersonal contact. Infectious transfer is determined by chance. The model is extended to incorporate various lockdown scenarios. Simulations with different lockdowns are provided. In addition, under logistic regression, the probability of death as a function of age and gender is estimated, as well as the duration of the disease given that an individual dies from it. The estimations have been done based on actual data of RIVM (from the Netherlands).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the royal society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721 (1927) Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the royal society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721 (1927)
5.
go back to reference Getz, W.M., Salter, R., Muellerklein, O., Yoon, H.S., Tallam, K.: Modeling epidemics: a primer and numerus model builder implementation. Epidemics 25, 9–19 (2018)CrossRef Getz, W.M., Salter, R., Muellerklein, O., Yoon, H.S., Tallam, K.: Modeling epidemics: a primer and numerus model builder implementation. Epidemics 25, 9–19 (2018)CrossRef
6.
go back to reference Alleman, T.W., Vergeynst, J., De Visscher, L., Rollier, M., Torfs, E., Nopens, I., Baetens, J.: Assessing the effects of non-pharmaceutical interventions on SARS-CoV-2 transmission in Belgium by means of an extended SEIQRD model and public mobility data. Epidemics 37, 100505 (2021)CrossRef Alleman, T.W., Vergeynst, J., De Visscher, L., Rollier, M., Torfs, E., Nopens, I., Baetens, J.: Assessing the effects of non-pharmaceutical interventions on SARS-CoV-2 transmission in Belgium by means of an extended SEIQRD model and public mobility data. Epidemics 37, 100505 (2021)CrossRef
7.
go back to reference Allen, L.J.: A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Model. 2(2), 128–142 (2017) Allen, L.J.: A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Model. 2(2), 128–142 (2017)
8.
go back to reference Pellis, L., et al.: Eight challenges for network epidemic models. Epidemics 10, 58–62 (2015)CrossRef Pellis, L., et al.: Eight challenges for network epidemic models. Epidemics 10, 58–62 (2015)CrossRef
9.
go back to reference Walters, C.E., Meslé, M.M., Hall, I.M.: Modelling the global spread of diseases: a review of current practice and capability. Epidemics 25, 1–8 (2018)CrossRef Walters, C.E., Meslé, M.M., Hall, I.M.: Modelling the global spread of diseases: a review of current practice and capability. Epidemics 25, 1–8 (2018)CrossRef
12.
go back to reference O’Neill, P.D.: A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain monte Carlo methods. Math. Biosci. 180(1–2), 103–114 (2002)MathSciNetCrossRef O’Neill, P.D.: A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain monte Carlo methods. Math. Biosci. 180(1–2), 103–114 (2002)MathSciNetCrossRef
13.
go back to reference Vermolen, F., Pölönen, I.: Uncertainty quantification on a spatial markov-chain model for the progression of skin cancer. J. Math. Biol. 80(3), 545–573 (2020)MathSciNetCrossRef Vermolen, F., Pölönen, I.: Uncertainty quantification on a spatial markov-chain model for the progression of skin cancer. J. Math. Biol. 80(3), 545–573 (2020)MathSciNetCrossRef
14.
go back to reference Chen, F.: Better modelling of infectious diseases: lessons from covid-19 in china. BMJ 375, 2363 (2021) Chen, F.: Better modelling of infectious diseases: lessons from covid-19 in china. BMJ 375, 2363 (2021)
15.
go back to reference Fanelli, D., Piazza, F.: Analysis and forecast of covid-19 spreading in china, Italy and France. Chaos, Solitons Fractals 134, 109761 (2020)MathSciNetCrossRef Fanelli, D., Piazza, F.: Analysis and forecast of covid-19 spreading in china, Italy and France. Chaos, Solitons Fractals 134, 109761 (2020)MathSciNetCrossRef
16.
go back to reference Yang, C., Wang, J.: A mathematical model for the novel coronavirus epidemic in Wuhan, china. Math. Biosci. Eng. 17(3), 2708–2724 (2020)MathSciNetCrossRef Yang, C., Wang, J.: A mathematical model for the novel coronavirus epidemic in Wuhan, china. Math. Biosci. Eng. 17(3), 2708–2724 (2020)MathSciNetCrossRef
17.
go back to reference Caccavo, D.: Chinese and italian covid-19 outbreaks can be correctly described by a modified sird model, medRxiv (2020) Caccavo, D.: Chinese and italian covid-19 outbreaks can be correctly described by a modified sird model, medRxiv (2020)
18.
go back to reference Al-Raeei, M.: The forecasting of covid-19 with mortality using SIRD epidemic model for the united states, Russia, China, and the Syrian Arab republic. AIP Adv. 10(6), 065325 (2020)CrossRef Al-Raeei, M.: The forecasting of covid-19 with mortality using SIRD epidemic model for the united states, Russia, China, and the Syrian Arab republic. AIP Adv. 10(6), 065325 (2020)CrossRef
19.
go back to reference Rajagopal, K., Hasanzadeh, N., Parastesh, F., Hamarash, I.I., Jafari, S., Hussain, I.: A fractional-order model for the novel coronavirus (covid-19) outbreak. Nonlinear Dyn. 101(1), 711–718 (2020)CrossRef Rajagopal, K., Hasanzadeh, N., Parastesh, F., Hamarash, I.I., Jafari, S., Hussain, I.: A fractional-order model for the novel coronavirus (covid-19) outbreak. Nonlinear Dyn. 101(1), 711–718 (2020)CrossRef
22.
go back to reference Cooper, I., Mondal, A., Antonopoulos, C.G.: A sir model assumption for the spread of covid-19 in different communities. Chaos, Solitons Fractals 139, 110057 (2020)MathSciNetCrossRef Cooper, I., Mondal, A., Antonopoulos, C.G.: A sir model assumption for the spread of covid-19 in different communities. Chaos, Solitons Fractals 139, 110057 (2020)MathSciNetCrossRef
23.
go back to reference Grimm, V., Heinlein, A., Klawonn, A., Lanser, M., Weber, J.: Estimating the time-dependent contact rate of sir and seir models in mathematical epidemiology using physics-informed neural networks,” Universität zu Köln, Technical Report, September 2020. https://kups.ub.uni-koeln.de/12159/ Grimm, V., Heinlein, A., Klawonn, A., Lanser, M., Weber, J.: Estimating the time-dependent contact rate of sir and seir models in mathematical epidemiology using physics-informed neural networks,” Universität zu Köln, Technical Report, September 2020. https://​kups.​ub.​uni-koeln.​de/​12159/​
Metadata
Title
A Spatial Markov Chain Cellular Automata Model for the Spread of Viruses
Authors
Jenny Lu
Fred Vermolen
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-10015-4_1

Premium Partner