Skip to main content
Top
Published in: BIT Numerical Mathematics 1/2015

01-03-2015

A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media

Authors: Adrianna Gillman, Alex H. Barnett, Per-Gunnar Martinsson

Published in: BIT Numerical Mathematics | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a direct solution technique for the scattering of time-harmonic waves from a bounded region of the plane in which the wavenumber varies smoothly in space. The method constructs the interior Dirichlet-to-Neumann (DtN) map for the bounded region via bottom-up recursive merges of (discretization of) certain boundary operators on a quadtree of boxes. These operators take the form of impedance-to-impedance (ItI) maps. Since ItI maps are unitary, this formulation is inherently numerically stable, and is immune to problems of artificial internal resonances. The ItI maps on the smallest (leaf) boxes are built by spectral collocation on tensor-product grids of Chebyshev nodes. At the top level the DtN map is recovered from the ItI map and coupled to a boundary integral formulation of the free space exterior problem, to give a provably second kind equation. Numerical results indicate that the scheme can solve challenging problems 70 wavelengths on a side to 9-digit accuracy with 4 million unknowns, in under 5 min on a desktop workstation. Each additional solve corresponding to a different incident wave (right-hand side) then requires only 0.04 s.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
This is also known as the Steklov–Poincaré operator [28].
 
2
Including both endpoints allows more accurate interpolation back to Gauss nodes; functions on each edge are available at all Chebyshev nodes for that edge.
 
3
We note that some refinement is necessary even though the solution is smooth near the (fictitious) corners. However, the extra cost of refinement, as opposed to, say, local corner rounding, is negligible.
 
4
The choice of bump height and width needs to be made carefully to ensure that a usable bandgap exists; this was done by creating a separate spectral solver for the band structure of the periodic problem.
 
Literature
1.
go back to reference Ang, W.: A beginner’s course in boundary element methods. Universal Publishers, USA (2007) Ang, W.: A beginner’s course in boundary element methods. Universal Publishers, USA (2007)
2.
go back to reference Babuska, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers SIAM. J. Numer. Anal. 34(6), 2392–2423 (1997)MATHMathSciNet Babuska, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers SIAM. J. Numer. Anal. 34(6), 2392–2423 (1997)MATHMathSciNet
3.
go back to reference Bayliss, A., Goldstein, C.I., Turkel, E.: The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics. Comput. Math. Appl. 11(7–8), 655–665 (1985)CrossRefMATHMathSciNet Bayliss, A., Goldstein, C.I., Turkel, E.: The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics. Comput. Math. Appl. 11(7–8), 655–665 (1985)CrossRefMATHMathSciNet
4.
go back to reference Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59(3), 396–404 (1985)CrossRefMATHMathSciNet Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59(3), 396–404 (1985)CrossRefMATHMathSciNet
5.
go back to reference Bebendorf, M.: Hierarchical matrices. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2008)MATH Bebendorf, M.: Hierarchical matrices. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2008)MATH
6.
go back to reference Börm, S.: Efficient numerical methods for non-local operators. EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2010)CrossRefMATH Börm, S.: Efficient numerical methods for non-local operators. EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2010)CrossRefMATH
7.
go back to reference Britt, S., Tsynkov, S., Turkel, E.: Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes. Commun. Comput. Phys. 9(3), 520–541 (2011)MathSciNet Britt, S., Tsynkov, S., Turkel, E.: Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes. Commun. Comput. Phys. 9(3), 520–541 (2011)MathSciNet
8.
go back to reference Chen, Y.: A fast, direct algorithm for the Lippmann–Schwinger integral equation in two dimensions. Adv. Comput. Math. 16(2–3), 175–190 (2002)CrossRefMATHMathSciNet Chen, Y.: A fast, direct algorithm for the Lippmann–Schwinger integral equation in two dimensions. Adv. Comput. Math. 16(2–3), 175–190 (2002)CrossRefMATHMathSciNet
9.
go back to reference Y. Chen. Total wave based fast direct solver for volume scattering problems. arxiv.org., #1302.2101 (2013) Y. Chen. Total wave based fast direct solver for volume scattering problems. arxiv.org., #1302.2101 (2013)
10.
go back to reference Collino, F., Ghanemi, S., Joly, P.: Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Eng. 184(2–4), 171–211 (2000)CrossRefMATHMathSciNet Collino, F., Ghanemi, S., Joly, P.: Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Eng. 184(2–4), 171–211 (2000)CrossRefMATHMathSciNet
11.
go back to reference Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, 2nd edn. Springer, Berlin (1998)CrossRefMATH Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, 2nd edn. Springer, Berlin (1998)CrossRefMATH
12.
go back to reference Duan, R., Rokhlin, V.: High-order quadratures for the solution of scattering problems in two dimensions. J. Comput. Phys. 228(6), 2152–2174 (2009)CrossRefMATHMathSciNet Duan, R., Rokhlin, V.: High-order quadratures for the solution of scattering problems in two dimensions. J. Comput. Phys. 228(6), 2152–2174 (2009)CrossRefMATHMathSciNet
13.
14.
go back to reference Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9(2), 686–710 (2011)CrossRefMATHMathSciNet Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9(2), 686–710 (2011)CrossRefMATHMathSciNet
15.
go back to reference Fang, Q., Meaney, P.M., Paulsen, K.D.: Viable three-dimensional medical microwave tomography: theory and numerical experiments. IEEE Trans. Antennas Propag. 58(2), 449–458 (2010)CrossRefMathSciNet Fang, Q., Meaney, P.M., Paulsen, K.D.: Viable three-dimensional medical microwave tomography: theory and numerical experiments. IEEE Trans. Antennas Propag. 58(2), 449–458 (2010)CrossRefMathSciNet
16.
go back to reference Friedlander, L.: Some inequalities between Dirichlet and Neumann eigenvalues. Arch. Ration. Mech. Anal. 116(2), 153–160 (1991)CrossRefMATH Friedlander, L.: Some inequalities between Dirichlet and Neumann eigenvalues. Arch. Ration. Mech. Anal. 116(2), 153–160 (1991)CrossRefMATH
18.
go back to reference Gillman, A., Martinsson, P.: A direct solver with \(O(N)\) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method (2013) (In review). Gillman, A., Martinsson, P.: A direct solver with \(O(N)\) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method (2013) (In review).
20.
21.
go back to reference Hao, S., Barnett, A.H., Martinsson, P.G., Young, P.: High-order accurate Nyström discretization of integral equations with weakly singular kernels on smooth curves in the plane Adv. Comput. Math. (2013) (in press) Hao, S., Barnett, A.H., Martinsson, P.G., Young, P.: High-order accurate Nyström discretization of integral equations with weakly singular kernels on smooth curves in the plane Adv. Comput. Math. (2013) (in press)
22.
go back to reference Heikkola, E., Rossi, T., Toivanen, J.: Fast direct solution of the Helmholtz equation with a perfectly matched layer/an absorbing boundary condition. Int. J. Numer. Methods Eng. 57, 2007–2025 (2003)CrossRefMATHMathSciNet Heikkola, E., Rossi, T., Toivanen, J.: Fast direct solution of the Helmholtz equation with a perfectly matched layer/an absorbing boundary condition. Int. J. Numer. Methods Eng. 57, 2007–2025 (2003)CrossRefMATHMathSciNet
23.
go back to reference Ho, K., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34(5), A2507–A2532 (2012)CrossRefMATHMathSciNet Ho, K., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34(5), A2507–A2532 (2012)CrossRefMATHMathSciNet
24.
go back to reference Kirsch, A., Monk, P.: An analysis of the coupling of finite-element and Nyström methods in acoustic scattering. IMA J. Numer. Anal. 14, 523–544 (1994)CrossRefMATHMathSciNet Kirsch, A., Monk, P.: An analysis of the coupling of finite-element and Nyström methods in acoustic scattering. IMA J. Numer. Anal. 14, 523–544 (1994)CrossRefMATHMathSciNet
25.
go back to reference Kopriva, D.: A staggered-grid multi domain spectral method for the compressible Navier–Stokes equations. J. Comput. Phys 143(1), 125–158 (1998)CrossRefMATHMathSciNet Kopriva, D.: A staggered-grid multi domain spectral method for the compressible Navier–Stokes equations. J. Comput. Phys 143(1), 125–158 (1998)CrossRefMATHMathSciNet
26.
go back to reference Martinsson, P.: A fast direct solver for a class of elliptic partial differential equations. J. Sci. Comput. 38(3), 316–330 (2009)CrossRefMATHMathSciNet Martinsson, P.: A fast direct solver for a class of elliptic partial differential equations. J. Sci. Comput. 38(3), 316–330 (2009)CrossRefMATHMathSciNet
27.
go back to reference Martinsson, P.: A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method. J. Comput. Phys. 242, 460–479 (2013)CrossRefMATHMathSciNet Martinsson, P.: A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method. J. Comput. Phys. 242, 460–479 (2013)CrossRefMATHMathSciNet
28.
go back to reference McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)MATH McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)MATH
29.
30.
go back to reference Olver, F., Lozier, D., Boisvert, R., Clark, C. (eds.) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). http://dlmf.nist.gov Olver, F., Lozier, D., Boisvert, R., Clark, C. (eds.) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). http://​dlmf.​nist.​gov
31.
go back to reference Pfeiffer, H., Kidder, L., Scheel, M., Teukolsky, S.: A multidomain spectral method for solving elliptic equations. Comput. Phys. Commun. 152(3), 253–273 (2003)CrossRefMATHMathSciNet Pfeiffer, H., Kidder, L., Scheel, M., Teukolsky, S.: A multidomain spectral method for solving elliptic equations. Comput. Phys. Commun. 152(3), 253–273 (2003)CrossRefMATHMathSciNet
32.
go back to reference Salzer, H.E.: Lagrangian interpolation at the Chebyshev points \(x_{n,\nu } \equiv \cos (\nu \pi /n)\), \(\nu =0(1)n\); some unnoted advantages. Comput. J. 15, 156–159 (1972)CrossRefMATHMathSciNet Salzer, H.E.: Lagrangian interpolation at the Chebyshev points \(x_{n,\nu } \equiv \cos (\nu \pi /n)\), \(\nu =0(1)n\); some unnoted advantages. Comput. J. 15, 156–159 (1972)CrossRefMATHMathSciNet
33.
go back to reference Schmitz, P., Ying, L.: A fast direct solver for elliptic problems on Cartesian meshes in 3D, 2011 (preprint) Schmitz, P., Ying, L.: A fast direct solver for elliptic problems on Cartesian meshes in 3D, 2011 (preprint)
34.
go back to reference Schmitz, P., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. 231(4), 1314–1338 (2012)CrossRefMATHMathSciNet Schmitz, P., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. 231(4), 1314–1338 (2012)CrossRefMATHMathSciNet
36.
37.
go back to reference Wadbro, E., Berggren, M.: High contrast microwave tomography using topology optimization techniques. J. Comput. Appl. Math. 234, 1773–1780 (2010)CrossRefMATHMathSciNet Wadbro, E., Berggren, M.: High contrast microwave tomography using topology optimization techniques. J. Comput. Appl. Math. 234, 1773–1780 (2010)CrossRefMATHMathSciNet
38.
go back to reference Wang, S., de Hoop, M.V., Xia, J.: On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver. Geophys. Prospect. 59(5), 857–873 (2011) Wang, S., de Hoop, M.V., Xia, J.: On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver. Geophys. Prospect. 59(5), 857–873 (2011)
39.
go back to reference Xia, J., Chandrasekaran, S., Gu, M., Li, X.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31(3), 1382–1411 (2009)CrossRefMathSciNet Xia, J., Chandrasekaran, S., Gu, M., Li, X.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31(3), 1382–1411 (2009)CrossRefMathSciNet
40.
go back to reference Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable matrices. Numer. Linear Algebra Appl. 17(6), 953–976 (2010)CrossRefMATHMathSciNet Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable matrices. Numer. Linear Algebra Appl. 17(6), 953–976 (2010)CrossRefMATHMathSciNet
41.
go back to reference Yang, B., Hesthaven, J.: Multidomain pseudospectral computation of Maxwell’s equations in 3-D general curvilinear coordinates. Appl. Numer. Math. 33(1–4), 281–289 (2000)CrossRefMATHMathSciNet Yang, B., Hesthaven, J.: Multidomain pseudospectral computation of Maxwell’s equations in 3-D general curvilinear coordinates. Appl. Numer. Math. 33(1–4), 281–289 (2000)CrossRefMATHMathSciNet
Metadata
Title
A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media
Authors
Adrianna Gillman
Alex H. Barnett
Per-Gunnar Martinsson
Publication date
01-03-2015
Publisher
Springer Netherlands
Published in
BIT Numerical Mathematics / Issue 1/2015
Print ISSN: 0006-3835
Electronic ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-014-0499-8

Other articles of this Issue 1/2015

BIT Numerical Mathematics 1/2015 Go to the issue

Premium Partner