Skip to main content
Top
Published in: Journal of Scientific Computing 2/2018

23-01-2018

A Stable and Convergent Hodge Decomposition Method for Fluid–Solid Interaction

Authors: Gangjoon Yoon, Chohong Min, Seick Kim

Published in: Journal of Scientific Computing | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fluid–solid interaction has been a challenging subject due to their strong nonlinearity and multidisciplinary nature. Many of the numerical methods for solving FSI problems have struggled with non-convergence and numerical instability. In spite of comprehensive studies, it has still been a challenge to develop a method that guarantees both convergence and stability. Our discussion in this work is restricted to the interaction of viscous incompressible fluid flow and a rigid body. We take the monolithic approach by Gibou and Min (J Comput Phys 231:3245–3263, 2012) that results in an augmented Hodge projection. The projection updates not only the fluid vector field but also the solid velocities. We derive the equivalence between the augmented Hodge projection and the Poisson equation with non-local Robin boundary condition. We prove the existence, uniqueness, and regularity for the weak solution of the Poisson equation, through which the Hodge projection is shown to be unique and orthogonal. We also show the stability of the projection in the sense that the projection does not increase the total kinetic energy of the fluid or the solid. Finally, we discuss a numerical method as a discrete analogue to the Hodge projection, then we show that the unique decomposition and orthogonality also hold in the discrete setting. As one of our main results, we prove that the numerical solution is convergent with at least first-order accuracy. We carry out numerical experiments in two and three dimensions, which validate our analysis and arguments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Badia, S., Nobile, F., Vergara, C.: Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 198, 2768–2784 (2009)MathSciNetCrossRefMATH Badia, S., Nobile, F., Vergara, C.: Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 198, 2768–2784 (2009)MathSciNetCrossRefMATH
2.
go back to reference Badia, S., Quaini, A., Quarteroni, A.: Modular versus non-modular preconditioners for fluid? Structure systems with large addedmass effect. Comput. Methods Appl. Mech. Eng. 197, 4216–4232 (2008)CrossRefMATH Badia, S., Quaini, A., Quarteroni, A.: Modular versus non-modular preconditioners for fluid? Structure systems with large addedmass effect. Comput. Methods Appl. Mech. Eng. 197, 4216–4232 (2008)CrossRefMATH
3.
go back to reference Borazjani, I., Ge, L., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)MathSciNetCrossRefMATH Borazjani, I., Ge, L., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)MathSciNetCrossRefMATH
4.
go back to reference Bridson, R.: Fluid Simulation for Computer Graphics, p. 02482. A K Pters Ltd., Wellesley (2008)CrossRef Bridson, R.: Fluid Simulation for Computer Graphics, p. 02482. A K Pters Ltd., Wellesley (2008)CrossRef
5.
go back to reference Bukač, M., Yotov, I., Zunino, P.: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Part. Differ. Equ. 31, 1054–1100 (2015)MathSciNetCrossRefMATH Bukač, M., Yotov, I., Zunino, P.: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Part. Differ. Equ. 31, 1054–1100 (2015)MathSciNetCrossRefMATH
6.
go back to reference Causin, P., Gerbeau, J., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194, 42–44 (2005)MathSciNetCrossRefMATH Causin, P., Gerbeau, J., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194, 42–44 (2005)MathSciNetCrossRefMATH
7.
go back to reference Chakrabarti, S.K. (ed.): Numerical Models in Fluid Structure Interaction, Advances in Fluid Mechanics, vol. 42, WIT Press, Ashurst (2005) Chakrabarti, S.K. (ed.): Numerical Models in Fluid Structure Interaction, Advances in Fluid Mechanics, vol. 42, WIT Press, Ashurst (2005)
8.
go back to reference Chen, Z.Q., Williams, R.J., Zhao, Z.: A Sobolev inequality and Neumann heat kernel estimate for unbounded domains. Math. Res. Lett. 1, 177–184 (1994)MathSciNetCrossRefMATH Chen, Z.Q., Williams, R.J., Zhao, Z.: A Sobolev inequality and Neumann heat kernel estimate for unbounded domains. Math. Res. Lett. 1, 177–184 (1994)MathSciNetCrossRefMATH
9.
go back to reference Degroote, J., Bruggeman, P., Haelterman, R., Vierendeels, J.: Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86, 2224–2234 (2008)CrossRef Degroote, J., Bruggeman, P., Haelterman, R., Vierendeels, J.: Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86, 2224–2234 (2008)CrossRef
10.
go back to reference Dowell, E.H., Hall, K.C.: Modeling of fluid–structure interaction. Ann. Rev. Fluid Mech. 33, 445–490 (2001)CrossRefMATH Dowell, E.H., Hall, K.C.: Modeling of fluid–structure interaction. Ann. Rev. Fluid Mech. 33, 445–490 (2001)CrossRefMATH
11.
go back to reference Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, New York (1998) Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, New York (1998)
12.
go back to reference Farhat, C., van der Zee, K., Geuzaine, P.: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng. 195, 1973–2001 (2006)MathSciNetCrossRefMATH Farhat, C., van der Zee, K., Geuzaine, P.: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng. 195, 1973–2001 (2006)MathSciNetCrossRefMATH
13.
go back to reference Fernández, M.: Incremental displacement-correction schemes for incompressible fluid–structure interaction. Numer. Math. 123, 21–65 (2013)MathSciNetCrossRefMATH Fernández, M.: Incremental displacement-correction schemes for incompressible fluid–structure interaction. Numer. Math. 123, 21–65 (2013)MathSciNetCrossRefMATH
14.
go back to reference Fernández, M., Mullaert, J.: Convergence and error analysis for a class of splitting schemes in incompressible fluid-structure interaction. IMA J. Numer. Anal. 36, 1748–1782 (2016)MathSciNetCrossRef Fernández, M., Mullaert, J.: Convergence and error analysis for a class of splitting schemes in incompressible fluid-structure interaction. IMA J. Numer. Anal. 36, 1748–1782 (2016)MathSciNetCrossRef
15.
go back to reference Förster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196(7), 1278–1293 (2007)MathSciNetCrossRefMATH Förster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196(7), 1278–1293 (2007)MathSciNetCrossRefMATH
16.
go back to reference Gee, M., Küttler, U., Wall, W.: Truly monolithic algebraic multigrid for fluid–structure interaction. Int. J. Numer. Methods Eng. 85, 987–1016 (2011)MathSciNetCrossRefMATH Gee, M., Küttler, U., Wall, W.: Truly monolithic algebraic multigrid for fluid–structure interaction. Int. J. Numer. Methods Eng. 85, 987–1016 (2011)MathSciNetCrossRefMATH
17.
go back to reference Gibou, F., Min, C.: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions. J. Comput. Phys. 231, 3245–3263 (2012)MathSciNetMATH Gibou, F., Min, C.: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions. J. Comput. Phys. 231, 3245–3263 (2012)MathSciNetMATH
18.
go back to reference Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second order, 1998th edn. Springer, Berlin (2001)MATH Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second order, 1998th edn. Springer, Berlin (2001)MATH
19.
go back to reference Grétarsson, J.T., Kwatra, N., Fedkiw, R.: Numerically stable fluid–structure interactions between compressible flow and solid structures. J. Comput. Phys. 230, 3062–3084 (2011)MathSciNetCrossRefMATH Grétarsson, J.T., Kwatra, N., Fedkiw, R.: Numerically stable fluid–structure interactions between compressible flow and solid structures. J. Comput. Phys. 230, 3062–3084 (2011)MathSciNetCrossRefMATH
20.
go back to reference Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRefMATH Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRefMATH
21.
go back to reference Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefMATH Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefMATH
22.
go back to reference Heil, M., Hazel, A., Boyle, J.: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43, 91–101 (2008)CrossRefMATH Heil, M., Hazel, A., Boyle, J.: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43, 91–101 (2008)CrossRefMATH
23.
go back to reference Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid–structure interaction using space–time finite elements. Comput. Methods Appl. Mech. Eng. 193, 2087–2104 (2004)CrossRefMATH Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid–structure interaction using space–time finite elements. Comput. Methods Appl. Mech. Eng. 193, 2087–2104 (2004)CrossRefMATH
24.
go back to reference Michler, C., Hulshoff, S.J., van Brummelen, E.H., de Borst, R.: A monolithic approach to fluid–structure interaction. Comput. Fluids 33, 839–848 (2004)CrossRefMATH Michler, C., Hulshoff, S.J., van Brummelen, E.H., de Borst, R.: A monolithic approach to fluid–structure interaction. Comput. Fluids 33, 839–848 (2004)CrossRefMATH
25.
go back to reference Morand, H.J.P., Ohayon, R.: Fluid–Structure Interaction: Applied Numerical Methods. Wiley, New York (1995)MATH Morand, H.J.P., Ohayon, R.: Fluid–Structure Interaction: Applied Numerical Methods. Wiley, New York (1995)MATH
26.
go back to reference Muha, B., Čanić, S.: Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207, 919–968 (2013)MathSciNetCrossRefMATH Muha, B., Čanić, S.: Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207, 919–968 (2013)MathSciNetCrossRefMATH
27.
go back to reference Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)MathSciNetCrossRefMATH Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)MathSciNetCrossRefMATH
28.
go back to reference Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., Oñate, E.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899 (2010)MathSciNetCrossRefMATH Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., Oñate, E.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899 (2010)MathSciNetCrossRefMATH
29.
go back to reference Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)MathSciNetCrossRefMATH Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)MathSciNetCrossRefMATH
30.
go back to reference Walhorn, E., Kölke, A., Hübner, B., Dinkler, D.: Fluid–structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83, 2100–2111 (2005)CrossRef Walhorn, E., Kölke, A., Hübner, B., Dinkler, D.: Fluid–structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83, 2100–2111 (2005)CrossRef
31.
go back to reference Xiu, D., Karniadakis, G.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684 (2001)MathSciNetCrossRefMATH Xiu, D., Karniadakis, G.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684 (2001)MathSciNetCrossRefMATH
Metadata
Title
A Stable and Convergent Hodge Decomposition Method for Fluid–Solid Interaction
Authors
Gangjoon Yoon
Chohong Min
Seick Kim
Publication date
23-01-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0638-x

Other articles of this Issue 2/2018

Journal of Scientific Computing 2/2018 Go to the issue

Premium Partner