Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Dynamic Games and Applications 4/2020

03-12-2019

A Stackelberg Game of Backward Stochastic Differential Equations with Applications

Authors: Yueyang Zheng, Jingtao Shi

Published in: Dynamic Games and Applications | Issue 4/2020

Login to get access
share
SHARE

Abstract

This paper is concerned with a Stackelberg game of backward stochastic differential equations (BSDEs), where the coefficients of the backward system and the cost functionals are deterministic, and the control domain is convex. Necessary and sufficient conditions of the optimality for the follower and the leader are first given for the general problem, by the stochastic maximum principles of BSDEs and forward–backward stochastic differential equations (FBSDEs), respectively. Then, a linear quadratic (LQ) Stackelberg game of BSDEs is investigated under standard assumptions. The state feedback representation for the optimal control of the follower is first given via two Riccati equations. Then, the leader’s problem is formulated as an optimal control problem of FBSDE with the control-independent diffusion term. Two high-dimensional Riccati equations are introduced to represent the state feedback for the optimal control of the leader. The solvability of the four Riccati equations are discussed. Theoretical results are applied to a pension fund problem of two players in the financial market.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Bagchi A, Başar T (1981) Stackelberg strategies in linear-quadratic stochastic differential games. J Optim Theory Appl 35(3):443–464 MathSciNetMATH Bagchi A, Başar T (1981) Stackelberg strategies in linear-quadratic stochastic differential games. J Optim Theory Appl 35(3):443–464 MathSciNetMATH
2.
go back to reference Bensoussan A, Chen SK, Sethi SP (2015) The maximum principle for global solutions of stochastic Stackelberg differential games. SIAM J Control Optim 53(4):1956–1981 MathSciNetMATH Bensoussan A, Chen SK, Sethi SP (2015) The maximum principle for global solutions of stochastic Stackelberg differential games. SIAM J Control Optim 53(4):1956–1981 MathSciNetMATH
3.
go back to reference Bismut J (1978) An introductory approach to duality in optimal stochastic control. SIAM Rev 20(1):62–78 MathSciNetMATH Bismut J (1978) An introductory approach to duality in optimal stochastic control. SIAM Rev 20(1):62–78 MathSciNetMATH
4.
go back to reference Cairns AJG, Blake D, Dowd K (2006) Stochastic lifestyling: optimal dynamic asset allocation for defined contribution pension plans. J Econ Dyn Control 30(5):843–877 MathSciNetMATH Cairns AJG, Blake D, Dowd K (2006) Stochastic lifestyling: optimal dynamic asset allocation for defined contribution pension plans. J Econ Dyn Control 30(5):843–877 MathSciNetMATH
5.
go back to reference Chen SP, Zhou XY (2000) Stochastic linear quadratic regulators with indefinite control weight costs. II. SIAM J Control Optim 39(4):1065–1081 MathSciNetMATH Chen SP, Zhou XY (2000) Stochastic linear quadratic regulators with indefinite control weight costs. II. SIAM J Control Optim 39(4):1065–1081 MathSciNetMATH
6.
go back to reference Du K, Huang JH, Wu Z (2019) Linear quadratic mean-field-game of backward stochastic differential systems. Math Control Relat Fields 8(3&4):653–678 MathSciNetMATH Du K, Huang JH, Wu Z (2019) Linear quadratic mean-field-game of backward stochastic differential systems. Math Control Relat Fields 8(3&4):653–678 MathSciNetMATH
7.
go back to reference Du K, Wu Z Linear-quadratic Stackelberg game for mean-field backward stochastic differential system and application. Math Prob Eng, Vol. 2019, Article ID 1798585, 17 pages Du K, Wu Z Linear-quadratic Stackelberg game for mean-field backward stochastic differential system and application. Math Prob Eng, Vol. 2019, Article ID 1798585, 17 pages
8.
go back to reference Dokuchaev NG, Zhou XY (1999) Stochastic control problems with terminal contingent conditions. J Math Anal Appl 238(1):143–165 MathSciNetMATH Dokuchaev NG, Zhou XY (1999) Stochastic control problems with terminal contingent conditions. J Math Anal Appl 238(1):143–165 MathSciNetMATH
9.
10.
go back to reference El Karoui N, Peng SG, Quenez MC (1997) Backward stochastic differential equations in finance. Math Finance 7(1):1–71 MathSciNetMATH El Karoui N, Peng SG, Quenez MC (1997) Backward stochastic differential equations in finance. Math Finance 7(1):1–71 MathSciNetMATH
11.
go back to reference Hamadène S (1999) Nonzero-sum linear-quadratic stochastic differential games and backward–forward equations. Stoch Anal Appl 17(1):117–130 MathSciNetMATH Hamadène S (1999) Nonzero-sum linear-quadratic stochastic differential games and backward–forward equations. Stoch Anal Appl 17(1):117–130 MathSciNetMATH
12.
go back to reference Hamadène S, Lepeltier JP (1995) Zero-sum stochastic differential games and backward equations. Syst Control Lett 24:259–263 MathSciNetMATH Hamadène S, Lepeltier JP (1995) Zero-sum stochastic differential games and backward equations. Syst Control Lett 24:259–263 MathSciNetMATH
13.
go back to reference Huang JH, Wang GC, Xiong J (2009) A maximum principle for partial information backward stochastic control problems with applications. SIAM J Control Optim 48(4):2106–2117 MathSciNetMATH Huang JH, Wang GC, Xiong J (2009) A maximum principle for partial information backward stochastic control problems with applications. SIAM J Control Optim 48(4):2106–2117 MathSciNetMATH
14.
go back to reference Huang JH, Wang SJ, Wu Z (2016) Backward mean-field linear-quadratic-gaussian (LQG) games: full and partial information. IEEE Trans Autom Control 61(12):3784–3796 MathSciNetMATH Huang JH, Wang SJ, Wu Z (2016) Backward mean-field linear-quadratic-gaussian (LQG) games: full and partial information. IEEE Trans Autom Control 61(12):3784–3796 MathSciNetMATH
15.
go back to reference Josa-Fombellida R, Rincón-Zapatero JP (2001) Minimization of risks in pension funding by means of contributions and portfolio selection. Insur Math Econ 29(1):35–45 MathSciNetMATH Josa-Fombellida R, Rincón-Zapatero JP (2001) Minimization of risks in pension funding by means of contributions and portfolio selection. Insur Math Econ 29(1):35–45 MathSciNetMATH
16.
go back to reference Josa-Fombellida R, Rincón-Zapatero JP (2019) Equilibrium strategies in a defined benefit pension plan game. Eur J Oper Res 275(1):374–386 MathSciNetMATH Josa-Fombellida R, Rincón-Zapatero JP (2019) Equilibrium strategies in a defined benefit pension plan game. Eur J Oper Res 275(1):374–386 MathSciNetMATH
17.
go back to reference Li N, Yu ZY (2018) Forward-backward stochastic differential equations and linear-quadratic generalized Stackelberg games. SIAM J Control Optim 56(6):4148–4180 MathSciNetMATH Li N, Yu ZY (2018) Forward-backward stochastic differential equations and linear-quadratic generalized Stackelberg games. SIAM J Control Optim 56(6):4148–4180 MathSciNetMATH
18.
go back to reference Li T, Sethi SP (2017) A review of dynamic Stackelberg game models. Dis Cont Dyn Syst Ser B 22(1):125–159 MathSciNetMATH Li T, Sethi SP (2017) A review of dynamic Stackelberg game models. Dis Cont Dyn Syst Ser B 22(1):125–159 MathSciNetMATH
19.
go back to reference Li X, Sun JR, Xiong J (2019) Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Appl Math Optim 80(1):223–250 MathSciNetMATH Li X, Sun JR, Xiong J (2019) Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Appl Math Optim 80(1):223–250 MathSciNetMATH
20.
go back to reference Lim AEB, Wong B (2010) A benchmarking approach to optimal asset allocation for insurers and pension funds. Insur Math Econ 46(2):317–327 MathSciNetMATH Lim AEB, Wong B (2010) A benchmarking approach to optimal asset allocation for insurers and pension funds. Insur Math Econ 46(2):317–327 MathSciNetMATH
21.
go back to reference Lim AEB, Zhou XY (2001) Linear-quadratic control of backward stochastic differential equations. SIAM J Control Optim 40(2):450–474 MathSciNetMATH Lim AEB, Zhou XY (2001) Linear-quadratic control of backward stochastic differential equations. SIAM J Control Optim 40(2):450–474 MathSciNetMATH
22.
go back to reference Lin YN, Jiang XS, Zhang WH (2019) An open-loop Stackelberg strategy for the linear quadratic mean-field stochastic differential game. IEEE Trans Autom Control 64(1):97–110 MathSciNetMATH Lin YN, Jiang XS, Zhang WH (2019) An open-loop Stackelberg strategy for the linear quadratic mean-field stochastic differential game. IEEE Trans Autom Control 64(1):97–110 MathSciNetMATH
23.
go back to reference Lou YJ, Li WQ (2013) Backward linear quadratic stochastic optimal control problems and nonzero sum differential games. In: Proceedings of 25th Chinese control and decision conference, pp 5015–5020, Guiyang, China, May 25–27 Lou YJ, Li WQ (2013) Backward linear quadratic stochastic optimal control problems and nonzero sum differential games. In: Proceedings of 25th Chinese control and decision conference, pp 5015–5020, Guiyang, China, May 25–27
24.
go back to reference Moon J, Başar T (2018) Linear quadratic mean field Stackelberg differential games. Automatica 97:200–213 MathSciNetMATH Moon J, Başar T (2018) Linear quadratic mean field Stackelberg differential games. Automatica 97:200–213 MathSciNetMATH
25.
go back to reference Øksendal B, Sandal L, Ubøe J (2013) Stochastic Stackelberg equilibria with applications to time dependent newsvendor models. J Econ Dyn Control 37(7):1284–1299 MathSciNetMATH Øksendal B, Sandal L, Ubøe J (2013) Stochastic Stackelberg equilibria with applications to time dependent newsvendor models. J Econ Dyn Control 37(7):1284–1299 MathSciNetMATH
26.
go back to reference Pardoux E, Peng SG (1990) Adapted solution of a backward stochastic differential equation. Syst Control Lett 14(1):55–61 MathSciNetMATH Pardoux E, Peng SG (1990) Adapted solution of a backward stochastic differential equation. Syst Control Lett 14(1):55–61 MathSciNetMATH
27.
go back to reference Pardoux E, Rascanu A (2014) Stochastic Differential Equation, Backward SDEs, Partial Differential Equations. Springer, Berlin MATH Pardoux E, Rascanu A (2014) Stochastic Differential Equation, Backward SDEs, Partial Differential Equations. Springer, Berlin MATH
28.
go back to reference Peng SG (1992) A generalized dynamic programming principle and Hamilton–Jacobi–Bellmen equation. Stoch Stoch Rep 38(2):119–134 MATH Peng SG (1992) A generalized dynamic programming principle and Hamilton–Jacobi–Bellmen equation. Stoch Stoch Rep 38(2):119–134 MATH
29.
go back to reference Peng SG (1993) Backward stochastic differential equations and applications to optimal control. Appl Math Optim 27(2):125–144 MathSciNetMATH Peng SG (1993) Backward stochastic differential equations and applications to optimal control. Appl Math Optim 27(2):125–144 MathSciNetMATH
30.
go back to reference Shi JT (2011) Optimal control of backward stochastic differential equations with time delayed generators. In Proceedings of 30th Chinese control conference, pp 1285–1289, Yantai, China, July 22–24 Shi JT (2011) Optimal control of backward stochastic differential equations with time delayed generators. In Proceedings of 30th Chinese control conference, pp 1285–1289, Yantai, China, July 22–24
31.
go back to reference Shi JT, Wang GC (2016) A non-zero sum differential game of BSDE with time-delayed generator and applications. IEEE Trans Autom Control 61(7):1959–1964 MATH Shi JT, Wang GC (2016) A non-zero sum differential game of BSDE with time-delayed generator and applications. IEEE Trans Autom Control 61(7):1959–1964 MATH
32.
go back to reference Shi JT, Wang GC, Xiong J (2016) Leader-follower stochastic differential game with asymmetric information and applications. Automatica 63:60–73 MathSciNetMATH Shi JT, Wang GC, Xiong J (2016) Leader-follower stochastic differential game with asymmetric information and applications. Automatica 63:60–73 MathSciNetMATH
33.
go back to reference Shi JT, Wang GC, Xiong J (2017) Linear-quadratic stochastic Stackelberg differential game with asymmetric information. Sci China Inf Sci 60(092202):1–15 Shi JT, Wang GC, Xiong J (2017) Linear-quadratic stochastic Stackelberg differential game with asymmetric information. Sci China Inf Sci 60(092202):1–15
34.
go back to reference Shi JT, Wu Z (2010) Maximum principle for forward-backward stochastic control system with random jump and applications to finance. J Syst Sci Complex 23:219–231 MathSciNetMATH Shi JT, Wu Z (2010) Maximum principle for forward-backward stochastic control system with random jump and applications to finance. J Syst Sci Complex 23:219–231 MathSciNetMATH
35.
go back to reference Simaan M, Cruz JB Jr (1973) On the Stackelberg game strategy in non-zero games. J Optim Theory Appl 11(5):533–555 MathSciNetMATH Simaan M, Cruz JB Jr (1973) On the Stackelberg game strategy in non-zero games. J Optim Theory Appl 11(5):533–555 MathSciNetMATH
36.
go back to reference von Stackelberg H (1934) Marktform und Gleichgewicht, Springer, Vienna. (An English translation appeared in The theory of the market economy, Oxford University Press, 1952.) von Stackelberg H (1934) Marktform und Gleichgewicht, Springer, Vienna. (An English translation appeared in The theory of the market economy, Oxford University Press, 1952.)
37.
go back to reference Wang GC, Xiao H, Xiong J (2018) A kind of LQ non-zero sum differential game of backward stochastic differential equations with asymmetric information. Automatica 97:346–352 MathSciNetMATH Wang GC, Xiao H, Xiong J (2018) A kind of LQ non-zero sum differential game of backward stochastic differential equations with asymmetric information. Automatica 97:346–352 MathSciNetMATH
38.
go back to reference Wang GC, Yu ZY (2010) A Pontryagin’s maximum principle for non-zero sum differential games of BSDEs with applications. IEEE Trans Autom Control 55(7):1742–1747 MathSciNetMATH Wang GC, Yu ZY (2010) A Pontryagin’s maximum principle for non-zero sum differential games of BSDEs with applications. IEEE Trans Autom Control 55(7):1742–1747 MathSciNetMATH
39.
go back to reference Wang GC, Yu ZY (2012) A partial information non-zero sum differential game of backward stochastic differential equations with applications. Automatica 48(2):342–352 MathSciNetMATH Wang GC, Yu ZY (2012) A partial information non-zero sum differential game of backward stochastic differential equations with applications. Automatica 48(2):342–352 MathSciNetMATH
40.
go back to reference Wu HL, Zhang L, Chen H (2015) Nash equilibrium strategies for a defined contribution pension management. Insur Math Econ 62:202–214 MathSciNetMATH Wu HL, Zhang L, Chen H (2015) Nash equilibrium strategies for a defined contribution pension management. Insur Math Econ 62:202–214 MathSciNetMATH
41.
go back to reference Xu JJ, Shi JT, Zhang HS (2018) A leader–follower stochastic linear quadratic differential game with time delay. Sci China Inf Sci 61(112202):1–13 MathSciNet Xu JJ, Shi JT, Zhang HS (2018) A leader–follower stochastic linear quadratic differential game with time delay. Sci China Inf Sci 61(112202):1–13 MathSciNet
42.
go back to reference Xu JJ, Zhang HS (2016) Sufficient and necessary open-loop Stackelberg strategy for two-player game with time delay. IEEE Trans Cyber 46(2):438–449 Xu JJ, Zhang HS (2016) Sufficient and necessary open-loop Stackelberg strategy for two-player game with time delay. IEEE Trans Cyber 46(2):438–449
43.
go back to reference Yong JM (2002) A leader–follower stochastic linear quadratic differential games. SIAM J Control Optim 41(4):1015–1041 MathSciNetMATH Yong JM (2002) A leader–follower stochastic linear quadratic differential games. SIAM J Control Optim 41(4):1015–1041 MathSciNetMATH
44.
go back to reference Yong JM (1999) Linear forward–backward stochastic differential equations. Appl Math Optim 39(1):93–119 MathSciNetMATH Yong JM (1999) Linear forward–backward stochastic differential equations. Appl Math Optim 39(1):93–119 MathSciNetMATH
45.
go back to reference Yu ZY, Ji SL (2008) Linear-quadratic non-zero sum differential game of backward stochastic differential equations. In: Proceedings of 27th Chinese control conference, pp 562–566, Kunming, China, July 16–18 Yu ZY, Ji SL (2008) Linear-quadratic non-zero sum differential game of backward stochastic differential equations. In: Proceedings of 27th Chinese control conference, pp 562–566, Kunming, China, July 16–18
46.
go back to reference Zhang AH, Ewald C-O (2010) Optimal investment for a pension fund under inflation risk. Math Methods Oper Res 71(2):353–369 MathSciNetMATH Zhang AH, Ewald C-O (2010) Optimal investment for a pension fund under inflation risk. Math Methods Oper Res 71(2):353–369 MathSciNetMATH
47.
go back to reference Zhang DT (2011) Backward linear-quadratic stochastic optimal control and nonzero-sum differential game problem with random jumps. J Syst Sci Complex 24(4):647–662 MathSciNetMATH Zhang DT (2011) Backward linear-quadratic stochastic optimal control and nonzero-sum differential game problem with random jumps. J Syst Sci Complex 24(4):647–662 MathSciNetMATH
48.
go back to reference Zhang JF (2017) Backward Stochastic Differential Equations, from Linear to Nonlinear Theory. Springer, New York MATH Zhang JF (2017) Backward Stochastic Differential Equations, from Linear to Nonlinear Theory. Springer, New York MATH
Metadata
Title
A Stackelberg Game of Backward Stochastic Differential Equations with Applications
Authors
Yueyang Zheng
Jingtao Shi
Publication date
03-12-2019
Publisher
Springer US
Published in
Dynamic Games and Applications / Issue 4/2020
Print ISSN: 2153-0785
Electronic ISSN: 2153-0793
DOI
https://doi.org/10.1007/s13235-019-00341-z

Other articles of this Issue 4/2020

Dynamic Games and Applications 4/2020 Go to the issue

Premium Partner