Skip to main content
Top

2025 | OriginalPaper | Chapter

A State-of-the-Art Review of Deep Learning-Based Object Detection Methods and Techniques

Authors : Chhaya Gupta, Nasib Singh Gill, Preeti Gulia

Published in: Innovative Computing and Communications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the state-of-the-art methods and techniques used in deep learning-based object detection. It begins with an introduction to the challenges and evolution of object detection, emphasizing the superiority of deep learning over traditional methods. The study explores region proposal-based frameworks like R-CNN, Fast R-CNN, and Faster R-CNN, as well as classification-based frameworks such as SSD and YOLO. Additionally, the chapter discusses segmentation models like Mask R-CNN, which provide pixel-level object detection. The architecture of CNNs and prominent models such as AlexNet, VGGNet, ResNet, and DenseNet are also detailed, along with their applications in human and face detection, weapon detection, and pedestrian detection. The chapter concludes by highlighting the progress and future research directions in the field of object detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adel, A., & Elhagry, G. Investigating the challenges of class imbalance and scale variation in object detection in aerial images, 1–8. Adel, A., & Elhagry, G. Investigating the challenges of class imbalance and scale variation in object detection in aerial images, 1–8.
6.
8.
go back to reference Farooq, M., & Hafeez, A. (2020). COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs. Farooq, M., & Hafeez, A. (2020). COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs.
9.
go back to reference Fujitake, M., & Sugimoto, A. Video representation learning through prediction for online object detection, 530–539. Fujitake, M., & Sugimoto, A. Video representation learning through prediction for online object detection, 530–539.
16.
31.
go back to reference Lee, D.-H., Chen, K.-L., Liou, K.-H., et al. (2019). Deep learning and control algorithms of direct perception for autonomous driving, 2–7. Lee, D.-H., Chen, K.-L., Liou, K.-H., et al. (2019). Deep learning and control algorithms of direct perception for autonomous driving, 2–7.
32.
go back to reference Li, G., Liu, Z., Member, S., & Bai, Z. Lightweight salient object detection in optical remote sensing images via feature correlation, 1–11. Li, G., Liu, Z., Member, S., & Bai, Z. Lightweight salient object detection in optical remote sensing images via feature correlation, 1–11.
35.
go back to reference Md, A., & Alam, M. (2019). Towards pedestrian detection using RetinaNet in ECCV 2018 wider pedestrian detection challenge. Md, A., & Alam, M. (2019). Towards pedestrian detection using RetinaNet in ECCV 2018 wider pedestrian detection challenge.
37.
go back to reference Neapolitan, R. E., & Neapolitan, R. E. (2018). Neural networks and deep learning. Neapolitan, R. E., & Neapolitan, R. E. (2018). Neural networks and deep learning.
38.
go back to reference Olmos, R., Tabik, S., Perez-Hernandez, F., et al. (2021). MULTICAST: MULTI confirmation-level alarm SysTem based on CNN and LSTM to mitigate false alarms for handgun detection in video-surveillance. Olmos, R., Tabik, S., Perez-Hernandez, F., et al. (2021). MULTICAST: MULTI confirmation-level alarm SysTem based on CNN and LSTM to mitigate false alarms for handgun detection in video-surveillance.
47.
go back to reference Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In 3rd international conference on learning representation ICLR 2015—Conference tracking proceeding (1–14). Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In 3rd international conference on learning representation ICLR 2015—Conference tracking proceeding (1–14).
55.
go back to reference Zou, Z., Shi, Z., Guo, Y., & Ye, J. (2019). Object detection in 20 years: A survey, 1–39. Zou, Z., Shi, Z., Guo, Y., & Ye, J. (2019). Object detection in 20 years: A survey, 1–39.
Metadata
Title
A State-of-the-Art Review of Deep Learning-Based Object Detection Methods and Techniques
Authors
Chhaya Gupta
Nasib Singh Gill
Preeti Gulia
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_35