Skip to main content
Top

2010 | OriginalPaper | Chapter

A Statistical Interestingness Measures for XML Based Association Rules

Authors : Izwan Nizal Mohd Shaharanee, Fedja Hadzic, Tharam S. Dillon

Published in: PRICAI 2010: Trends in Artificial Intelligence

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Recently mining frequent substructures from XML data has gained a considerable amount of interest. Different methods have been proposed and examined for mining frequent patterns from XML documents efficiently and effectively. While many frequent XML patterns generated are useful and interesting, it is common that a large portion of them is not considered as interesting or significant for the application at hand. In this paper, we present a systematic approach to ascertain whether the discovered XML patterns are significant and not just coincidental associations, and provide a precise statistical approach to support this framework. The proposed strategy combines data mining and statistical measurement techniques to discard the non significant patterns. In this paper we considered the “Prions” database that describes the protein instances stored for Human Prions Protein. The proposed unified framework is applied on this dataset to demonstrate its effectiveness in assessing interestingness of discovered XML patterns by statistical means. When the dataset is used for classification/prediction purposes, the proposed approach will discard non significant XML patterns, without the cost of a reduction in the accuracy of the pattern set as a whole.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadata
Title
A Statistical Interestingness Measures for XML Based Association Rules
Authors
Izwan Nizal Mohd Shaharanee
Fedja Hadzic
Tharam S. Dillon
Copyright Year
2010
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-15246-7_20

Premium Partner