Skip to main content
Top

2023 | OriginalPaper | Chapter

A Study of \(\acute{C}iri\acute{c}\) Type Generalized Contraction Via \(\mathcal {B}\)-Contraction with Application

Authors : Vizender Singh, Bijender Singh

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the advanced topic of fixed point theory, specifically focusing on the recently introduced concept of type generalized -contraction. It begins with a historical overview of fixed point theory, highlighting its significance and applications across various disciplines. The main results of the chapter include the introduction of type generalized -contraction for single and pair of maps, along with theorems demonstrating their unique fixed points, coincidence points, and common fixed points. The chapter also presents examples to illustrate the practicality of these new concepts. Furthermore, it applies these theoretical findings to solve integral equations, providing a unique perspective on the application of fixed point theory in mathematical analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference \(\acute{C}iri\acute{c}\), L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974) \(\acute{C}iri\acute{c}\), L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)
2.
go back to reference \(\acute{C}iri\acute{c}\), L.B.: Fixed Point Theory, Contraction Mapping Principle. Faculty Mechanical Engineering. University of Belgrade, Belgrade (2003) \(\acute{C}iri\acute{c}\), L.B.: Fixed Point Theory, Contraction Mapping Principle. Faculty Mechanical Engineering. University of Belgrade, Belgrade (2003)
3.
go back to reference Jungck, G.: Compatible mappings and common fixed points. Int. J. Math. Sci. 9, 771–779 (1986)CrossRefMATH Jungck, G.: Compatible mappings and common fixed points. Int. J. Math. Sci. 9, 771–779 (1986)CrossRefMATH
4.
go back to reference Jungck, G., Rhoadas, B.E.: Fixed point set valued functions without continuity. Indian J. Pure Appl. Math. 29, 227–238 (1998) Jungck, G., Rhoadas, B.E.: Fixed point set valued functions without continuity. Indian J. Pure Appl. Math. 29, 227–238 (1998)
5.
go back to reference Pant, R.P., Bisht, R.K.: Occasionally weakly compatible mappings and fixed points. Bull. Belg. Math. Soc. Simon Stevin. 19, 655–661 (2012)CrossRefMATH Pant, R.P., Bisht, R.K.: Occasionally weakly compatible mappings and fixed points. Bull. Belg. Math. Soc. Simon Stevin. 19, 655–661 (2012)CrossRefMATH
6.
go back to reference Pant, R.P.: A Common fixed point theorem under a new condition. Indian J. Pure Appl. Math. 30(2), 147–152 (1999)MATH Pant, R.P.: A Common fixed point theorem under a new condition. Indian J. Pure Appl. Math. 30(2), 147–152 (1999)MATH
7.
go back to reference Bisht, R.K., Pant, R.K.: Common fixed point theorems under new continuity condition. Ann. Univ. Ferrara Sez. VII Sci. Math. 58, 127–141 (2012)CrossRefMATH Bisht, R.K., Pant, R.K.: Common fixed point theorems under new continuity condition. Ann. Univ. Ferrara Sez. VII Sci. Math. 58, 127–141 (2012)CrossRefMATH
8.
go back to reference Bisht, R.K., Shah, N.: Faintly Compatible Mappings and Common Fixed Points Theory and Application, vol. 156 (2003) Bisht, R.K., Shah, N.: Faintly Compatible Mappings and Common Fixed Points Theory and Application, vol. 156 (2003)
9.
go back to reference Minack, G., Helvaci, A., Altun, I.: Ciric type Generalization F-contraction on complete metric spaces and fixed point results 28(6), 1143–1151 (2014) Minack, G., Helvaci, A., Altun, I.: Ciric type Generalization F-contraction on complete metric spaces and fixed point results 28(6), 1143–1151 (2014)
10.
go back to reference Wardowski, D.: Fixed Points of a new type of Contractive mappings in complete metric spaces. Fixed Point Theory Appl. 94 (2012) Wardowski, D.: Fixed Points of a new type of Contractive mappings in complete metric spaces. Fixed Point Theory Appl. 94 (2012)
11.
go back to reference Wardowski, D., Van Dung, N.: Fixed points of F-Weak contraction on complete metric spaces. Demonstr. Math. 47, 146–155 (2014)MATH Wardowski, D., Van Dung, N.: Fixed points of F-Weak contraction on complete metric spaces. Demonstr. Math. 47, 146–155 (2014)MATH
12.
go back to reference Singh, B., Singh, V.: Vizender, fixed point theorems for new type of mappings in metric spaces and application. J. Int. Acad. Phys. Sci. D 25(1), 11–24 (2021) Singh, B., Singh, V.: Vizender, fixed point theorems for new type of mappings in metric spaces and application. J. Int. Acad. Phys. Sci. D 25(1), 11–24 (2021)
13.
go back to reference Lu, N., He, F., Huang, H.: Answers to questions on the generalized banch contraction conjecture in b-metric spaces. J. Fixed Point Theory Appl. 21, 43 (2019)CrossRefMATH Lu, N., He, F., Huang, H.: Answers to questions on the generalized banch contraction conjecture in b-metric spaces. J. Fixed Point Theory Appl. 21, 43 (2019)CrossRefMATH
14.
go back to reference Isik, H., Turkoglu, D.: Generalized weakly \(\alpha \)-contractive mappings and applications to ordinary differential equations. Miskolc Math. Notes. 17, 365–379 (2019)CrossRefMATH Isik, H., Turkoglu, D.: Generalized weakly \(\alpha \)-contractive mappings and applications to ordinary differential equations. Miskolc Math. Notes. 17, 365–379 (2019)CrossRefMATH
15.
go back to reference Abbas, M., Berzig, M., Nazir, T., Karapinar, E.: Iterative approximation of fixed points for Presic type F-Contraction operators. UPB Sci. Bull. Ser. 78, 147–160 (2016)MATH Abbas, M., Berzig, M., Nazir, T., Karapinar, E.: Iterative approximation of fixed points for Presic type F-Contraction operators. UPB Sci. Bull. Ser. 78, 147–160 (2016)MATH
Metadata
Title
A Study of Type Generalized Contraction Via -Contraction with Application
Authors
Vizender Singh
Bijender Singh
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_42

Premium Partners