Skip to main content
Top
Published in: Mechanics of Composite Materials 6/2022

25-01-2022

A Study on the Delamination and Flexural Behavior of Carbon- and Aramid-Fiber-Reinforced Epoxy Composites with Silicon Carbide Particle Inclusions

Author: M. Alsaadi

Published in: Mechanics of Composite Materials | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interlaminar fracture of Mode-II delamination and flexural behavior of carbon- and aramid-fiber-reinforced epoxy (CFRE and AFRE) composites filled with silicon carbide (SiC) particles were investigated. End-notched flexure tests were performed to obtain their Mode-II fracture toughness properties with the aim to enhance the Mode-II delamination behavior of both the composites. The results obtained showed that SiC particles improve the delamination and the flexural characteristics of AFRE-SiC composites more than those of CFRE-SiC composites. The highest values of their Mode-II delamination toughness were obtained at 5 wt.% of SiC particles. Scanning electron micrographs showed that the particles increase the adhesion strength between the matrix and fibers, reduce the interlayer region, and hinder the formation of plastic zones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Alsaadi, M. Bulut, A. Erkliğ, and A. Jabbar, “Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites,” Composites Part B: Engineering, 152, 169-179 (2018).CrossRef M. Alsaadi, M. Bulut, A. Erkliğ, and A. Jabbar, “Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites,” Composites Part B: Engineering, 152, 169-179 (2018).CrossRef
2.
go back to reference A. Rybak, L. Jarosinski, K. Gaska, and C. Kapusta, “Graphene nanoplatelet-silica hybrid epoxy composites as electrical insulation with enhanced thermal conductivity,” Polymer Composites, 39, 1682-1691 (2018).CrossRef A. Rybak, L. Jarosinski, K. Gaska, and C. Kapusta, “Graphene nanoplatelet-silica hybrid epoxy composites as electrical insulation with enhanced thermal conductivity,” Polymer Composites, 39, 1682-1691 (2018).CrossRef
3.
go back to reference M. Alsaadi and A. Erkliğ. “Effect of perlite particle contents on delamination toughness of S-glass fiber reinforced epoxy matrix composites,” Composites, Part B: Engineering, 141, 182-190 (2018). M. Alsaadi and A. Erkliğ. “Effect of perlite particle contents on delamination toughness of S-glass fiber reinforced epoxy matrix composites,” Composites, Part B: Engineering, 141, 182-190 (2018).
4.
go back to reference T. Zhang, J. Chen, K. Wang, and Y. Zhao, “Improved interlaminar crack resistance of glass fiber/poly (phenylene sulfide) thermoplastic composites modified with multiwalled carbon nanotubes,” Polymer Composites, 40, No. 11, 4186-4195 (2019). T. Zhang, J. Chen, K. Wang, and Y. Zhao, “Improved interlaminar crack resistance of glass fiber/poly (phenylene sulfide) thermoplastic composites modified with multiwalled carbon nanotubes,” Polymer Composites, 40, No. 11, 4186-4195 (2019).
5.
go back to reference D. Chakraborty, S. Saha, S. Dey, and S. Pramanik, “Enhanced mechanical toughness of carbon nanofibrous-coated surface modified Kevlar reinforced polyurethane/epoxy matrix hybrid composites,” Journal of Applied Polymer Science, 137, 48802 (2019).CrossRef D. Chakraborty, S. Saha, S. Dey, and S. Pramanik, “Enhanced mechanical toughness of carbon nanofibrous-coated surface modified Kevlar reinforced polyurethane/epoxy matrix hybrid composites,” Journal of Applied Polymer Science, 137, 48802 (2019).CrossRef
6.
go back to reference U. A. Shakil, S. B. Hassan, M. Y. Yahya, and S. Nauman, “Mechanical properties of electrospun nanofiber reinforced/interleaved epoxy matrix composites—A review,” Polymer Composites, 41, 2288-2315, (2020).CrossRef U. A. Shakil, S. B. Hassan, M. Y. Yahya, and S. Nauman, “Mechanical properties of electrospun nanofiber reinforced/interleaved epoxy matrix composites—A review,” Polymer Composites, 41, 2288-2315, (2020).CrossRef
7.
go back to reference S. Vigneshwaran, M. Uthayakumar, V. Arumugaprabu, R. Deepak, and J. Johnson, “Influence of filler on erosion behavior of polymer composites: A comprehensive review,” Journal of Reinforced Plastics and Composites, 37, No. 15, 1011-1019 (2018). S. Vigneshwaran, M. Uthayakumar, V. Arumugaprabu, R. Deepak, and J. Johnson, “Influence of filler on erosion behavior of polymer composites: A comprehensive review,” Journal of Reinforced Plastics and Composites, 37, No. 15, 1011-1019 (2018).
8.
go back to reference M. R. Dadfar and F. Ghadami, “Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites,” Mater. Design, 47, 16-20 (2013).CrossRef M. R. Dadfar and F. Ghadami, “Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites,” Mater. Design, 47, 16-20 (2013).CrossRef
9.
go back to reference S. Van der Heijden, L. Daelemans, B. De Schoenmaker, L. De Baere, H. Rachier, and W. Van Paepegem, “interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres,” Compos. Sci. Technol., 104, 66-73 (2014).CrossRef S. Van der Heijden, L. Daelemans, B. De Schoenmaker, L. De Baere, H. Rachier, and W. Van Paepegem, “interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres,” Compos. Sci. Technol., 104, 66-73 (2014).CrossRef
10.
go back to reference J. L. Urdániz and A. Ivanković, “Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes,” Mater. Design, 143, 81-92 (2018).CrossRef J. L. Urdániz and A. Ivanković, “Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes,” Mater. Design, 143, 81-92 (2018).CrossRef
11.
go back to reference D. Quan, D. Carolan, C. Rouge, N. Murphy, and A. Ivankovic, “Carbon nanotubes and core–shell rubber nanoparticles modified structural epoxy adhesives,” Journal of Materials Science, 52, No. 8, 4493-508 (2017). D. Quan, D. Carolan, C. Rouge, N. Murphy, and A. Ivankovic, “Carbon nanotubes and core–shell rubber nanoparticles modified structural epoxy adhesives,” Journal of Materials Science, 52, No. 8, 4493-508 (2017).
12.
go back to reference D. Carolan, A. Ivankovic, A. J. Kinloch, S. Sprenger, and A. C. Taylor, “Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices,” Journal of Materials Science, 52, No. 3, 1767-1788 (2017). D. Carolan, A. Ivankovic, A. J. Kinloch, S. Sprenger, and A. C. Taylor, “Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices,” Journal of Materials Science, 52, No. 3, 1767-1788 (2017).
13.
go back to reference D. Quan, R. A. Pearson, and A. Ivankovic, “Interaction of toughening mechanisms in ternary nanocomposites,” Polymer Composites, 39, No. 10, 3482-3496 (2018). D. Quan, R. A. Pearson, and A. Ivankovic, “Interaction of toughening mechanisms in ternary nanocomposites,” Polymer Composites, 39, No. 10, 3482-3496 (2018).
14.
go back to reference M. Bulut, M. Alsaadi, and A. Erklig, “A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles,” Materials Research Express, 5, No. 2, 025301 (2018). M. Bulut, M. Alsaadi, and A. Erklig, “A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles,” Materials Research Express, 5, No. 2, 025301 (2018).
15.
go back to reference M. Alsaadi, A. A. Ugla, and A. Erklig, “A comparative study on the interlaminar shear strength of carbon, glass, and Kevlar fabric/epoxy laminates filled with SiC particles,” Journal of Composite Materials, 51, No.20, 2835-2844 (2017). M. Alsaadi, A. A. Ugla, and A. Erklig, “A comparative study on the interlaminar shear strength of carbon, glass, and Kevlar fabric/epoxy laminates filled with SiC particles,” Journal of Composite Materials, 51, No.20, 2835-2844 (2017).
16.
go back to reference C. Bai, J. Zheng, G. A. Rizzi, and P. Colombo, “Low-temperature fabrication of SiC/geopolymer cellular composites,” Composites, Part B: Engineering, 137, 23-30, (2018). C. Bai, J. Zheng, G. A. Rizzi, and P. Colombo, “Low-temperature fabrication of SiC/geopolymer cellular composites,” Composites, Part B: Engineering, 137, 23-30, (2018).
17.
go back to reference M. S. Kim, K. Y. Rhee, and S. J. Park, “Pitch coating of SiC and its effects on the thermal stability and oxidation resistance of SiC/epoxy composites,” Composites, Part B: Engineering, 94, 218-223 (2016). M. S. Kim, K. Y. Rhee, and S. J. Park, “Pitch coating of SiC and its effects on the thermal stability and oxidation resistance of SiC/epoxy composites,” Composites, Part B: Engineering, 94, 218-223 (2016).
18.
go back to reference D. J. Kwon, P. S. Shin, J. H. Kim, Y. M. Baek, H. S. Park, K. L. DeVries, and J. M. Park, “Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles,” Composites, Part B: Engineering, 130, 46-53 (2017). D. J. Kwon, P. S. Shin, J. H. Kim, Y. M. Baek, H. S. Park, K. L. DeVries, and J. M. Park, “Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles,” Composites, Part B: Engineering, 130, 46-53 (2017).
19.
go back to reference A. Roulin, W. Cantwell, and H. Kausch, “Parameters determining the strength and toughness of particulate-filled epoxy resins,” Polymer Composites, 8, 314-323 (1987).CrossRef A. Roulin, W. Cantwell, and H. Kausch, “Parameters determining the strength and toughness of particulate-filled epoxy resins,” Polymer Composites, 8, 314-323 (1987).CrossRef
20.
go back to reference M. S. Bhagyashekar and R. M. Rao, “Characterization of mechanical behavior of metallic and non-metallic particulate filled epoxy matrix composites,” Journal of Reinforced Plastics and Composites, 29, No. 1, 30-44 (2010). M. S. Bhagyashekar and R. M. Rao, “Characterization of mechanical behavior of metallic and non-metallic particulate filled epoxy matrix composites,” Journal of Reinforced Plastics and Composites, 29, No. 1, 30-44 (2010).
21.
go back to reference Q. Wu, L. Li, Y. D. Zhang, and W. J. Shui, “Absorption and mechanical properties of SiCp/PVDF composites,” Composites, Part B: Engineering, 131, 1-7 (2017). Q. Wu, L. Li, Y. D. Zhang, and W. J. Shui, “Absorption and mechanical properties of SiCp/PVDF composites,” Composites, Part B: Engineering, 131, 1-7 (2017).
22.
go back to reference S. M. Lee, “Mode II delamination failure mechanisms of polymer matrix composites,” J. Mater. Sci., 32, 1287-1295 (1997).CrossRef S. M. Lee, “Mode II delamination failure mechanisms of polymer matrix composites,” J. Mater. Sci., 32, 1287-1295 (1997).CrossRef
23.
go back to reference J. J. Lee, J. O. Lim, and J. S. Huh, “Mode II interlaminar fracture behavior of carbon bead-filled epoxy/glass fiber hybrid composite,” Polymer Composites, 21, 343-352 (2000).CrossRef J. J. Lee, J. O. Lim, and J. S. Huh, “Mode II interlaminar fracture behavior of carbon bead-filled epoxy/glass fiber hybrid composite,” Polymer Composites, 21, 343-352 (2000).CrossRef
24.
go back to reference A. Seyhan, M. Tanoglu, and K. Schulte, “Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites,” Engineering Fracture Mechanics, 75, 5151-5162 (2008).CrossRef A. Seyhan, M. Tanoglu, and K. Schulte, “Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites,” Engineering Fracture Mechanics, 75, 5151-5162 (2008).CrossRef
25.
go back to reference M. Alsaadi and A. Erkliğ, “A comparative study on mode I and mode II interlaminar behavior of borax and SiC particles toughened S-glass fabric/epoxy composite,” Arabian Journal for Science and Engineering, 42, No. 11, 4759-4769 (2017). M. Alsaadi and A. Erkliğ, “A comparative study on mode I and mode II interlaminar behavior of borax and SiC particles toughened S-glass fabric/epoxy composite,” Arabian Journal for Science and Engineering, 42, No. 11, 4759-4769 (2017).
26.
go back to reference M. F. de Moura, R. Fernandes, F. G. Silva, and N. Dourado, “Mode II fracture characterization of a hybrid cork/carbonepoxy laminate,” Composites, Part B: Engineering, 76, 44-51 (2015). M. F. de Moura, R. Fernandes, F. G. Silva, and N. Dourado, “Mode II fracture characterization of a hybrid cork/carbonepoxy laminate,” Composites, Part B: Engineering, 76, 44-51 (2015).
27.
go back to reference P. A. Tarantili and A. G. Andreopoulos, “Mechanical properties of epoxies reinforced with chloride-treated aramid fibers,” Journal of Applied Polymer Science, 65, No. 2, 267-276 (1997). P. A. Tarantili and A. G. Andreopoulos, “Mechanical properties of epoxies reinforced with chloride-treated aramid fibers,” Journal of Applied Polymer Science, 65, No. 2, 267-276 (1997).
28.
go back to reference D. J. Vaughan, “The use of coupling agents to enhance the performance of aramid reinforced composites,” Polymer Engineering & Science, 18, No. 2, 167-169, (1978).CrossRef D. J. Vaughan, “The use of coupling agents to enhance the performance of aramid reinforced composites,” Polymer Engineering & Science, 18, No. 2, 167-169, (1978).CrossRef
29.
go back to reference J. M. Zhang, B. Cortés-Ballesteros, and T. Peijs, “All-aramid composites by partial fiber dissolution in mixed solvents,” Polymer Composites, 39, No. 9, 3013-3021 (2018). J. M. Zhang, B. Cortés-Ballesteros, and T. Peijs, “All-aramid composites by partial fiber dissolution in mixed solvents,” Polymer Composites, 39, No. 9, 3013-3021 (2018).
30.
go back to reference C. K. Das, G. C. Nayak, and R. Rajasekar, “Kevlar fiber-reinforced polymer composites. Polymer Composites,” Ch. 7, Wiley-VCH Verlag GmbH & Co. KGaA, USA, 209-274 (2012). C. K. Das, G. C. Nayak, and R. Rajasekar, “Kevlar fiber-reinforced polymer composites. Polymer Composites,” Ch. 7, Wiley-VCH Verlag GmbH & Co. KGaA, USA, 209-274 (2012).
31.
go back to reference M. Alsaadi and A. Erkliğ, “Effects of clay and silica nanoparticles on the Charpy impact resistance of a carbon/aramid fiber reinforced epoxy composite,” Materials Testing, 61, No. 1, 65–70 (2019). M. Alsaadi and A. Erkliğ, “Effects of clay and silica nanoparticles on the Charpy impact resistance of a carbon/aramid fiber reinforced epoxy composite,” Materials Testing, 61, No. 1, 65–70 (2019).
32.
go back to reference T. M. Liu, Y. S. Zheng, and J. Hu, “Surface modification of aramid fibers with new chemical method for improving interfacial bonding strength with epoxy resin,” Journal of Applied Polymer Science, 118, No. 5, 2541-2552 (2010). T. M. Liu, Y. S. Zheng, and J. Hu, “Surface modification of aramid fibers with new chemical method for improving interfacial bonding strength with epoxy resin,” Journal of Applied Polymer Science, 118, No. 5, 2541-2552 (2010).
33.
go back to reference T. J. Singh and S. Samanta, “Characterization of Kevlar fiber and its composites: A review,” Materials Today: Proceedings, 2, No. 4-5, 1381-1387 (2015). T. J. Singh and S. Samanta, “Characterization of Kevlar fiber and its composites: A review,” Materials Today: Proceedings, 2, No. 4-5, 1381-1387 (2015).
34.
go back to reference M. S. Sohn, and X. Z. Hu, “Mode II delamination toughness of carbon-fibre/epoxy composites with chopped Kevlar fibre reinforcement,” Composites Science and Technology, 52, No.3, 439-448 (1994). M. S. Sohn, and X. Z. Hu, “Mode II delamination toughness of carbon-fibre/epoxy composites with chopped Kevlar fibre reinforcement,” Composites Science and Technology, 52, No.3, 439-448 (1994).
35.
go back to reference ASTM D790-10 “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA (2010). ASTM D790-10 “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA (2010).
36.
go back to reference L. A. Carlsson, J. W. Gillespie, and B. R. Trethewey, “Mode-II interlaminar fracture of graphite/epoxy and Graphite/PEEK,” J. Reinf. Plast. Comp., 5, 170–187 (1986).CrossRef L. A. Carlsson, J. W. Gillespie, and B. R. Trethewey, “Mode-II interlaminar fracture of graphite/epoxy and Graphite/PEEK,” J. Reinf. Plast. Comp., 5, 170–187 (1986).CrossRef
37.
go back to reference K. Bilisik, G. Erdogan, E. Sapanci, and S. Gungor, “Mode-II fracture of nanostitched para-aramid/phenolic nanoprepreg composites by end-notched flexure,” Journal of Composite Materials, 54, No. 24, 3537-3557 (2020). K. Bilisik, G. Erdogan, E. Sapanci, and S. Gungor, “Mode-II fracture of nanostitched para-aramid/phenolic nanoprepreg composites by end-notched flexure,” Journal of Composite Materials, 54, No. 24, 3537-3557 (2020).
38.
go back to reference S. Sajith, V. Arumugam, and H. N. Dhakal, “Effects of curing pressure on mode II fracture toughness of uni-directional GFRP laminates,” Polymer Testing, 48, 59-68 (2015).CrossRef S. Sajith, V. Arumugam, and H. N. Dhakal, “Effects of curing pressure on mode II fracture toughness of uni-directional GFRP laminates,” Polymer Testing, 48, 59-68 (2015).CrossRef
39.
go back to reference H. Chai, “Observation of deformation and damage at the tip of cracks in adhesive bonds in shear and assessment of a criterion for fracture,” Int. J. Fract., 60, 311-326 (1993).CrossRef H. Chai, “Observation of deformation and damage at the tip of cracks in adhesive bonds in shear and assessment of a criterion for fracture,” Int. J. Fract., 60, 311-326 (1993).CrossRef
Metadata
Title
A Study on the Delamination and Flexural Behavior of Carbon- and Aramid-Fiber-Reinforced Epoxy Composites with Silicon Carbide Particle Inclusions
Author
M. Alsaadi
Publication date
25-01-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 6/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10004-7

Other articles of this Issue 6/2022

Mechanics of Composite Materials 6/2022 Go to the issue

Premium Partners