Skip to main content
Top
Published in: Journal of Materials Science 16/2017

26-04-2017 | Chemical routes to materials

A study on the effect of selected process parameters in a jet diffusion flame for Pt nanoparticle formation

Authors: Justin M. Roller, Siwon Kim, Tony Kwak, Haoran Yu, Radenka Maric

Published in: Journal of Materials Science | Issue 16/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pt is used in many catalytic applications from three-way catalysts to fuel cells. Particle size and morphology are key parameters that influence the electrocatalytic activity. Flame synthesis is an efficient and continuous manufacturing route capable of producing Pt nanoparticles with desirable catalytic properties. In order to understand the effect of the forced oxidant, solvent composition, and quench rate on nanoparticle formation, a systematic study of process parameters using Pt was undertaken. Reactive spray deposition technology was used as the synthesis platform. In order to obtain a tight control of the Pt size, it was found that the fuel must contain a sufficient enthalpy of combustion and appropriate propane content. The fuel must be mixed adequately to form a turbulent diffusion flame and must create conditions where unwanted Pt coarsening cannot occur. From this study, the conditions that favor this morphology require an O2 flow rate setting of 6.89 L/min or higher, a propane content of 20 wt%, and no quenching. Electrochemical data show decreasing electrochemical surface area (75–36 m2/gPt), increasing mass activity (120–610 mA/mgPt), and increasing specific activity (150–1350 \( \upmu {\text{A}}/ {\text{cm}}^{2} {_{\text{Pt}}} \)) with increasing oxidant flow.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Takeuchi M, Matsumoto S (2004) NOx storage-reduction catalysts for gasoline engines. Top Catal 28:151–156CrossRef Takeuchi M, Matsumoto S (2004) NOx storage-reduction catalysts for gasoline engines. Top Catal 28:151–156CrossRef
2.
go back to reference Faur Ghenciu A (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6:389–399CrossRef Faur Ghenciu A (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6:389–399CrossRef
3.
go back to reference Zhang J, Sasaki K, Sutter E et al (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222CrossRef Zhang J, Sasaki K, Sutter E et al (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222CrossRef
4.
go back to reference Stamenkovic VR, Fowler B, Mun BS et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRef Stamenkovic VR, Fowler B, Mun BS et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRef
5.
go back to reference Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P et al (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6:1080–1084CrossRef Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P et al (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6:1080–1084CrossRef
6.
go back to reference Narayanan R, El-Sayed M (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348CrossRef Narayanan R, El-Sayed M (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348CrossRef
7.
go back to reference Somorjai GA, Blakely DW (1975) Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 258:580–583CrossRef Somorjai GA, Blakely DW (1975) Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 258:580–583CrossRef
8.
go back to reference Sun S, Chen A, Huang T et al (1992) Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions. J Electroanal Chem 340:213–226CrossRef Sun S, Chen A, Huang T et al (1992) Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions. J Electroanal Chem 340:213–226CrossRef
9.
go back to reference Buckley HE (1951) Crystal growth. Wiley, New York, pp 500–503 Buckley HE (1951) Crystal growth. Wiley, New York, pp 500–503
10.
go back to reference Teoh WY, Amal R, Madler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347CrossRef Teoh WY, Amal R, Madler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347CrossRef
11.
go back to reference Roller JM, Arellano-Jiménez MJ, Yu H et al (2013) Catalyst nanoscale assembly from the vapor phase on corrosion resistant supports. Electrochim Acta 107:632–655CrossRef Roller JM, Arellano-Jiménez MJ, Yu H et al (2013) Catalyst nanoscale assembly from the vapor phase on corrosion resistant supports. Electrochim Acta 107:632–655CrossRef
12.
go back to reference Roller J, Neagu R, Orfino F et al (2012) Supported and unsupported platinum catalysts prepared by a one-step dry deposition method and their oxygen reduction reactivity in acidic media. J Mater Sci 47:4604–4611CrossRef Roller J, Neagu R, Orfino F et al (2012) Supported and unsupported platinum catalysts prepared by a one-step dry deposition method and their oxygen reduction reactivity in acidic media. J Mater Sci 47:4604–4611CrossRef
13.
go back to reference Roller J, Maric R, Neagu R et al (2011) Oxygen reduction reaction evaluation of platinum catalysts formed via the reactive spray deposition technique, ASME 2011 9th fuel cell science. Eng Technol Conf FuelCell 54278:277–286 Roller J, Maric R, Neagu R et al (2011) Oxygen reduction reaction evaluation of platinum catalysts formed via the reactive spray deposition technique, ASME 2011 9th fuel cell science. Eng Technol Conf FuelCell 54278:277–286
14.
go back to reference Maric R, Roller J, Neagu R (2011) Flame based technologies and reactive spray deposition technology for low temperature solid oxide fuel cells: technical and economic aspects. J Therm Spray Technol 20:696–718CrossRef Maric R, Roller J, Neagu R (2011) Flame based technologies and reactive spray deposition technology for low temperature solid oxide fuel cells: technical and economic aspects. J Therm Spray Technol 20:696–718CrossRef
15.
go back to reference Hawthorne WR, Weddell DS, Hottel HC (1949) Mixing and combustion in turbulent gas jets. Symp Combust Flame Explos Phenom 3:266–288CrossRef Hawthorne WR, Weddell DS, Hottel HC (1949) Mixing and combustion in turbulent gas jets. Symp Combust Flame Explos Phenom 3:266–288CrossRef
16.
go back to reference Bilger RW (1976) Turbulent jet diffusion flames. Prog Energy Combust Sci 1:87–109CrossRef Bilger RW (1976) Turbulent jet diffusion flames. Prog Energy Combust Sci 1:87–109CrossRef
17.
go back to reference Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596CrossRef Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596CrossRef
18.
go back to reference Strobel R, Pratsinis S (2009) Flame synthesis of supported platinum group metals for catalysis and sensors. Platin Met Rev 53(1):11–20CrossRef Strobel R, Pratsinis S (2009) Flame synthesis of supported platinum group metals for catalysis and sensors. Platin Met Rev 53(1):11–20CrossRef
19.
go back to reference Ernst FO, Büchel R, Strobel R et al (2008) One-step flame-synthesis of carbon-embedded and -supported platinum clusters. Chem Mater 20:2117–2123CrossRef Ernst FO, Büchel R, Strobel R et al (2008) One-step flame-synthesis of carbon-embedded and -supported platinum clusters. Chem Mater 20:2117–2123CrossRef
20.
go back to reference Maric R, Schalchi B, Mitlin D et al (2010) Microstructure of low-platinum loaded catalysts prepared using a novel high temperature route via the reactive spray deposition technology process, in meeting abstracts. Electrochem Soc 9:599 Maric R, Schalchi B, Mitlin D et al (2010) Microstructure of low-platinum loaded catalysts prepared using a novel high temperature route via the reactive spray deposition technology process, in meeting abstracts. Electrochem Soc 9:599
21.
go back to reference Maric R, Roller JM, Neagu R et al (2008) Low Pt thin cathode layer catalyst layer by reactive spray deposition technology. ECS Trans 12:59–63CrossRef Maric R, Roller JM, Neagu R et al (2008) Low Pt thin cathode layer catalyst layer by reactive spray deposition technology. ECS Trans 12:59–63CrossRef
22.
go back to reference Maric R, Roller J, Vanderhoek T (2016) Reactive spray formation of coatings and powders. US 9,399,234 B2. 26 Jul. 2016 Maric R, Roller J, Vanderhoek T (2016) Reactive spray formation of coatings and powders. US 9,399,234 B2. 26 Jul. 2016
23.
go back to reference Maric R (2008) Spray-based and CVD processes for synthesis of fuel cell catalysts and thin catalyst layers. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, New York, NY, pp 917–958CrossRef Maric R (2008) Spray-based and CVD processes for synthesis of fuel cell catalysts and thin catalyst layers. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, New York, NY, pp 917–958CrossRef
24.
go back to reference Roller J, Ayers K, Mustain WE et al (2013) Hydrogen evolution on combustion catalyzed electrodes with low loadings for PEM Electrolyzers. Electrochem Soc 159:K165–K176 Roller J, Ayers K, Mustain WE et al (2013) Hydrogen evolution on combustion catalyzed electrodes with low loadings for PEM Electrolyzers. Electrochem Soc 159:K165–K176
25.
go back to reference Roller JM, Josefina Arellano-Jiménez M, Jain R et al (2013) Oxygen evolution during water electrolysis from thin films using bimetallic oxides of Ir-Pt and Ir-Ru. J Electrochem Soc 160:F716–F730CrossRef Roller JM, Josefina Arellano-Jiménez M, Jain R et al (2013) Oxygen evolution during water electrolysis from thin films using bimetallic oxides of Ir-Pt and Ir-Ru. J Electrochem Soc 160:F716–F730CrossRef
26.
go back to reference Roller J, Renner J, Yu H et al (2014) Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes. J Power Sources 271:366–376CrossRef Roller J, Renner J, Yu H et al (2014) Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes. J Power Sources 271:366–376CrossRef
27.
go back to reference Choi ID, Lee H, Shim Y et al (2010) A one-step continuous synthesis of carbon-supported pt catalysts using a flame for the preparation of the fuel electrode. Langmuir 26:11212–11216CrossRef Choi ID, Lee H, Shim Y et al (2010) A one-step continuous synthesis of carbon-supported pt catalysts using a flame for the preparation of the fuel electrode. Langmuir 26:11212–11216CrossRef
28.
go back to reference Faguy P, Miller C, Hunt A et al (2004) Fuel cell having improved catalytic layer. WO03015199 (A1). 20 Feb. 2003 Faguy P, Miller C, Hunt A et al (2004) Fuel cell having improved catalytic layer. WO03015199 (A1). 20 Feb. 2003
29.
go back to reference Breitkopf RC, Hwang J, Maniei F et al (2003) Carbon supported Pt nanomaterials for fuel cell applications using combustion chemical vapor condensation. Nanotech 3:490–492 Breitkopf RC, Hwang J, Maniei F et al (2003) Carbon supported Pt nanomaterials for fuel cell applications using combustion chemical vapor condensation. Nanotech 3:490–492
30.
go back to reference Hwang J, Shao H, Richards N et al (1999) Platinum-catalyzed polymer electrolyte membrane for fuel cells. MRS Proc 575:239CrossRef Hwang J, Shao H, Richards N et al (1999) Platinum-catalyzed polymer electrolyte membrane for fuel cells. MRS Proc 575:239CrossRef
31.
go back to reference Oljaca M, Xing Y, Lovelace C et al (2002) Flame synthesis of nanopowders via combustion chemical vapor deposition. J Mater Sci Lett 21:621–626CrossRef Oljaca M, Xing Y, Lovelace C et al (2002) Flame synthesis of nanopowders via combustion chemical vapor deposition. J Mater Sci Lett 21:621–626CrossRef
32.
go back to reference Garsany Y, Singer IL, Swider-Lyons KE (2011) Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. J Electroanal Chem 662:396–406CrossRef Garsany Y, Singer IL, Swider-Lyons KE (2011) Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. J Electroanal Chem 662:396–406CrossRef
33.
go back to reference Mädler L, Kammler HK, Mueller R et al (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33:369–389CrossRef Mädler L, Kammler HK, Mueller R et al (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33:369–389CrossRef
34.
go back to reference Karpetis AN, Gomez A (2000) An experimental study of well-defined turbulent nonpremixed spray flames. Combust Flame 121:1–21CrossRef Karpetis AN, Gomez A (2000) An experimental study of well-defined turbulent nonpremixed spray flames. Combust Flame 121:1–21CrossRef
35.
go back to reference Glassman I (1977) Combustion. Academic Press Inc, New York Glassman I (1977) Combustion. Academic Press Inc, New York
36.
go back to reference Spalding DB (ed) (1953) The combustion of liquid fuels. Williams and Wilkins, Baltimore, pp 847–864 Spalding DB (ed) (1953) The combustion of liquid fuels. Williams and Wilkins, Baltimore, pp 847–864
37.
go back to reference Godsave GE (1953) 4th symposium (Int) on combustion. pp 818–830 Godsave GE (1953) 4th symposium (Int) on combustion. pp 818–830
38.
go back to reference Jossen R, Pratsinis SE, Stark WJ et al (2005) criteria for flame-spray synthesis of hollow, shell-like, or inhomogeneous oxides. J Am Ceram Soc 88:1388CrossRef Jossen R, Pratsinis SE, Stark WJ et al (2005) criteria for flame-spray synthesis of hollow, shell-like, or inhomogeneous oxides. J Am Ceram Soc 88:1388CrossRef
39.
go back to reference Rosebrock CD, Wriedt T, Mädler L, Wegner K (2016) The role of microexplosions in flame spray synthesis for homogeneous nanopowders from low-cost metal precursors. AIChE J 62:381–391CrossRef Rosebrock CD, Wriedt T, Mädler L, Wegner K (2016) The role of microexplosions in flame spray synthesis for homogeneous nanopowders from low-cost metal precursors. AIChE J 62:381–391CrossRef
40.
go back to reference Roller JM, Maric R (2015) A study on reactive spray deposition technology processing parameters in the context of Pt nanoparticle formation. J Therm Spray Technol 24:1529–1541CrossRef Roller JM, Maric R (2015) A study on reactive spray deposition technology processing parameters in the context of Pt nanoparticle formation. J Therm Spray Technol 24:1529–1541CrossRef
41.
go back to reference Basu S, Cetegen BM (2008) Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet. Acta Mater 56:2750–2759CrossRef Basu S, Cetegen BM (2008) Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet. Acta Mater 56:2750–2759CrossRef
42.
go back to reference Ozturk A, Cetegen BM (2004) Modeling of plasma assisted formation of precipitates in zirconium containing liquid precursor droplets. Mater Sci Eng A 384:331–351CrossRef Ozturk A, Cetegen BM (2004) Modeling of plasma assisted formation of precipitates in zirconium containing liquid precursor droplets. Mater Sci Eng A 384:331–351CrossRef
43.
go back to reference Messing GL, Zhang S, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726CrossRef Messing GL, Zhang S, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726CrossRef
44.
go back to reference Min M, Cho J, Cho K et al (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45:4211–4217CrossRef Min M, Cho J, Cho K et al (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45:4211–4217CrossRef
45.
go back to reference Wegner K, Pratsinis SE (2003) Nozzle-quenching process for controlled flame synthesis of titania nanoparticles. AIChE J 49:1667–1675CrossRef Wegner K, Pratsinis SE (2003) Nozzle-quenching process for controlled flame synthesis of titania nanoparticles. AIChE J 49:1667–1675CrossRef
46.
go back to reference Roth P (2007) Particle synthesis in flames. Proc Combust Inst 31:1773–1788CrossRef Roth P (2007) Particle synthesis in flames. Proc Combust Inst 31:1773–1788CrossRef
47.
go back to reference Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17:4743–4756CrossRef Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17:4743–4756CrossRef
48.
go back to reference Wooldridge MS (1998) Gas-phase combustion synthesis of particles. Prog Energy Combust Sci 24:63–87CrossRef Wooldridge MS (1998) Gas-phase combustion synthesis of particles. Prog Energy Combust Sci 24:63–87CrossRef
49.
go back to reference Pratsinis SE (2011) In: Ensor DS (ed) Aerosol science and technology: history and reviews. RTI International, Research Triangle Park, NC, pp 475–508 Pratsinis SE (2011) In: Ensor DS (ed) Aerosol science and technology: history and reviews. RTI International, Research Triangle Park, NC, pp 475–508
50.
go back to reference Pratsinis SE, Vemury S (1996) Particle formation in gases: a review. Powder Technol 88:267–273CrossRef Pratsinis SE, Vemury S (1996) Particle formation in gases: a review. Powder Technol 88:267–273CrossRef
51.
go back to reference Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219CrossRef Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219CrossRef
52.
go back to reference Ulrich GD (1984) Flame synthesis of fine particles. Chem Eng News Arch 62:22–29CrossRef Ulrich GD (1984) Flame synthesis of fine particles. Chem Eng News Arch 62:22–29CrossRef
53.
go back to reference Bard AJ, Faulkner LR (1988) Electrochemical methods; fundamentals and applications. Wiley, New York, p 331 Bard AJ, Faulkner LR (1988) Electrochemical methods; fundamentals and applications. Wiley, New York, p 331
54.
go back to reference Shinozaki K, Zack JW, Pylypenko S et al (2015) Benchmarking the oxygen reduction reaction activity of Pt-based catalysts using standardized rotating disk electrode methods. Int J Hydrogen Energy 40:16820–16830CrossRef Shinozaki K, Zack JW, Pylypenko S et al (2015) Benchmarking the oxygen reduction reaction activity of Pt-based catalysts using standardized rotating disk electrode methods. Int J Hydrogen Energy 40:16820–16830CrossRef
Metadata
Title
A study on the effect of selected process parameters in a jet diffusion flame for Pt nanoparticle formation
Authors
Justin M. Roller
Siwon Kim
Tony Kwak
Haoran Yu
Radenka Maric
Publication date
26-04-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1101-y

Other articles of this Issue 16/2017

Journal of Materials Science 16/2017 Go to the issue

Premium Partners