Skip to main content
Top

2024 | OriginalPaper | Chapter

A Subtle Design of Prediction Models Using Machine Learning Algorithms for Advocating Selection and Forecasting Sales of Garments: A Case Study

Authors : Dillip Rout, Bholanath Roy, Prasanna Kapse

Published in: Advances in Data-Driven Computing and Intelligent Systems

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the use of machine learning algorithms to automate decision-making processes in the fashion retail industry. It focuses on predicting future sales and recommending products based on historical data. The study compares various algorithms, including Logistic Regression, Decision Trees, Random Forests, and Support Vector Machines, to determine their effectiveness in different scenarios. Feature selection and the creation of dummy variables are explored to enhance model accuracy. Additionally, the chapter includes a time series analysis to forecast sales for future days. The case study uses a dataset of retail information on dresses, providing valuable insights into the application of machine learning in fashion retail. The conclusions highlight the usefulness of certain algorithms for classification and the need for further improvements in model accuracy and feature discretization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmed RAED, Shehab ME, Morsy S, Mekawie N (2015) Performance study of classification algorithms for consumer online shopping attitudes and behavior using data mining. In: Proceedings—2015 5th international conference on communication systems and network technologies, CSNT 2015, pp 1344–1349 Ahmed RAED, Shehab ME, Morsy S, Mekawie N (2015) Performance study of classification algorithms for consumer online shopping attitudes and behavior using data mining. In: Proceedings—2015 5th international conference on communication systems and network technologies, CSNT 2015, pp 1344–1349
2.
go back to reference Bajari P, Nekipelov D, Ryan SP, Yang M (2015) Machine learning methods for demand estimation. Am Econ Rev 105:481–485CrossRef Bajari P, Nekipelov D, Ryan SP, Yang M (2015) Machine learning methods for demand estimation. Am Econ Rev 105:481–485CrossRef
3.
go back to reference Bradlow ET, Gangwar M, Kopalle P, Voleti S (2017) The role of big data and predictive analytics in retailing. J Retail 93(1):79–95CrossRef Bradlow ET, Gangwar M, Kopalle P, Voleti S (2017) The role of big data and predictive analytics in retailing. J Retail 93(1):79–95CrossRef
6.
go back to reference Dahana WD, Miwa Y, Morisada M (2019) Linking lifestyle to customer lifetime value: an exploratory study in an online fashion retail market. J Business Res 99(1):319–331CrossRef Dahana WD, Miwa Y, Morisada M (2019) Linking lifestyle to customer lifetime value: an exploratory study in an online fashion retail market. J Business Res 99(1):319–331CrossRef
7.
go back to reference De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, Haibe-Kains B (2013) MRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29(18):2365–2368CrossRef De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, Haibe-Kains B (2013) MRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29(18):2365–2368CrossRef
8.
go back to reference Dekimpe MG (2020) Retailing and retailing research in the age of big data analytics. Int J Res Mark 37(1):3–14CrossRef Dekimpe MG (2020) Retailing and retailing research in the age of big data analytics. Int J Res Mark 37(1):3–14CrossRef
9.
go back to reference Ferreira KJ, Lee BHA, Simchi-levi D (2016) Analytics for an Online Retailer?: demand forecasting and price optimization. Manuf Serv Oper Manage Publ 18(1):69–88CrossRef Ferreira KJ, Lee BHA, Simchi-levi D (2016) Analytics for an Online Retailer?: demand forecasting and price optimization. Manuf Serv Oper Manage Publ 18(1):69–88CrossRef
10.
go back to reference Huber J, Stuckenschmidt H (2020) Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int J Forecast Huber J, Stuckenschmidt H (2020) Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int J Forecast
11.
go back to reference Hwangbo H, Kim YS, Cha KJ (2017) Use of the smart store for persuasive marketing and immersive customer experiences: a case study of Korean apparel enterprise. Mob Inform Syst Hwangbo H, Kim YS, Cha KJ (2017) Use of the smart store for persuasive marketing and immersive customer experiences: a case study of Korean apparel enterprise. Mob Inform Syst
13.
go back to reference Kalaiselvi N, Aravind KR, Balaguru S, Vijayaragul V (2017) Retail price analytics using backpropogation neural network and sentimental analysis. International conference on signal processing, communication and networking, ICSCN 2017:16–21 Kalaiselvi N, Aravind KR, Balaguru S, Vijayaragul V (2017) Retail price analytics using backpropogation neural network and sentimental analysis. International conference on signal processing, communication and networking, ICSCN 2017:16–21
14.
go back to reference Kaneko Y, Yada K (2016) A deep learning approach for the prediction of retail store sales. In: IEEE International Conference on Data Mining Workshops, ICDMW, vol 16, pp 531–537. IEEE Kaneko Y, Yada K (2016) A deep learning approach for the prediction of retail store sales. In: IEEE International Conference on Data Mining Workshops, ICDMW, vol 16, pp 531–537. IEEE
15.
go back to reference Khakpour A (2020) Data science for decision support: using machine learning and big data in sales forecasting for production and retail. Ph.D. thesis, Ostfold University College Khakpour A (2020) Data science for decision support: using machine learning and big data in sales forecasting for production and retail. Ph.D. thesis, Ostfold University College
16.
go back to reference Krishna A, Akhilesh V, Aich A, Hegde C (2018) Sales-forecasting of retail stores using machine learning techniques. In: Proceedings 2018 3rd international conference on computational systems and information technology for sustainable solutions, CSITSS 2018, pp 160–166. IEEE Krishna A, Akhilesh V, Aich A, Hegde C (2018) Sales-forecasting of retail stores using machine learning techniques. In: Proceedings 2018 3rd international conference on computational systems and information technology for sustainable solutions, CSITSS 2018, pp 160–166. IEEE
17.
go back to reference Lee SH, Chow PS (2020) Investigating consumer attitudes and intentions toward online fashion renting retailing. J Retail Consum Serv 52(1):101892CrossRef Lee SH, Chow PS (2020) Investigating consumer attitudes and intentions toward online fashion renting retailing. J Retail Consum Serv 52(1):101892CrossRef
19.
go back to reference Lorenzo-Romero C, Andrés-Martínez ME, Cordente-Rodríguez M, Gómez-Borja MÁ (2021) Active participation of e-consumer: a qualitative analysis from fashion retailer perspective. SAGE Open 11(1) Lorenzo-Romero C, Andrés-Martínez ME, Cordente-Rodríguez M, Gómez-Borja MÁ (2021) Active participation of e-consumer: a qualitative analysis from fashion retailer perspective. SAGE Open 11(1)
22.
go back to reference Ravnik R, Solina F, Zabkar V (2014) Modelling in-store consumer behaviour using machine learning and digital signage for audience measurement data. Springer International Publishing Switzerland 8811:123–133 Ravnik R, Solina F, Zabkar V (2014) Modelling in-store consumer behaviour using machine learning and digital signage for audience measurement data. Springer International Publishing Switzerland 8811:123–133
23.
go back to reference Razmochaeva NV, Klionskiy DM (2019) Data presentation and application of machine learning methods for automating retail sales management processes. In: Proceedings of the 2019 IEEE conference of Russian young researchers in electrical and electronic engineering, ElConRus 2019, IEEE, pp 1444–1448, no 1 Razmochaeva NV, Klionskiy DM (2019) Data presentation and application of machine learning methods for automating retail sales management processes. In: Proceedings of the 2019 IEEE conference of Russian young researchers in electrical and electronic engineering, ElConRus 2019, IEEE, pp 1444–1448, no 1
24.
go back to reference Rout D, Roy B (2023) Multi-algorithm machine learning model for important feature extraction for sales of a garment retail dataset. In: 1st international conference on recent trends in multidisciplinary research and innovation, pp 282–286 Rout D, Roy B (2023) Multi-algorithm machine learning model for important feature extraction for sales of a garment retail dataset. In: 1st international conference on recent trends in multidisciplinary research and innovation, pp 282–286
25.
go back to reference Shrivastava V, Narayan Arya P (2012) A study of various clustering algorithms on retail sales data. Int J Comput 1(2):68 Shrivastava V, Narayan Arya P (2012) A study of various clustering algorithms on retail sales data. Int J Comput 1(2):68
27.
go back to reference Soguero-Ruiz C, Gimeno-Blanes FJ, Mora-Jiménez I, Martínez-Ruiz MP, Rojo-Álvarez JL (2012) On the differential benchmarking of promotional efficiency with machine learning modeling (I): principles and statistical comparison. Exp Syst Appl 39(17):12772–12783CrossRef Soguero-Ruiz C, Gimeno-Blanes FJ, Mora-Jiménez I, Martínez-Ruiz MP, Rojo-Álvarez JL (2012) On the differential benchmarking of promotional efficiency with machine learning modeling (I): principles and statistical comparison. Exp Syst Appl 39(17):12772–12783CrossRef
28.
go back to reference Suleman D, Zuniarti I, Marginingsih R, Susilowati IH, Sari I, Sabil S, Nurhayaty E (2021) The effect of decision to purchase on shop fashion product in Indonesia mediated by attitude to shop. Manage Sci Lett 11:111–116CrossRef Suleman D, Zuniarti I, Marginingsih R, Susilowati IH, Sari I, Sabil S, Nurhayaty E (2021) The effect of decision to purchase on shop fashion product in Indonesia mediated by attitude to shop. Manage Sci Lett 11:111–116CrossRef
29.
go back to reference Tokatli N (2008) Global sourcing: insights from the global clothing industry–the case of zara, a fast fashion retailer. J Econ Geogr 8(1):21–38CrossRef Tokatli N (2008) Global sourcing: insights from the global clothing industry–the case of zara, a fast fashion retailer. J Econ Geogr 8(1):21–38CrossRef
31.
go back to reference Wen X, Choi TM, Chung SH (2019) Fashion retail supply chain management: a review of operational models. Int J Prod Econ 207:34–55CrossRef Wen X, Choi TM, Chung SH (2019) Fashion retail supply chain management: a review of operational models. Int J Prod Econ 207:34–55CrossRef
32.
go back to reference Zhu W, Zeng N, Wang N (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. In: Northeast SAS Users Group 2010: Health Care and Life Sciences, pp 1–9 Zhu W, Zeng N, Wang N (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. In: Northeast SAS Users Group 2010: Health Care and Life Sciences, pp 1–9
Metadata
Title
A Subtle Design of Prediction Models Using Machine Learning Algorithms for Advocating Selection and Forecasting Sales of Garments: A Case Study
Authors
Dillip Rout
Bholanath Roy
Prasanna Kapse
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_29