Skip to main content
Top
Published in:

01-12-2016 | Original Article

A supervised learning approach to link prediction in Twitter

Authors: Cherry Ahmed, Abeer ElKorany, Reem Bahgat

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The growth of social networks has lately attracted both academic and industrial researchers to study the ties between people, and how the social networks evolve with time. Social networks like Facebook, Twitter and Flickr require efficient and accurate methods to recommend friends to their users in the network. Several algorithms have been developed to recommend friends or predict likelihood of future links. Two main approaches are used to utilize those features; Score-based Approaches and Machine Learning Approaches. In a previous work, a score-based method was used based on topological, node and social features to calculate similarity between users and determine the likelihood of forming future links. This work has been extended by moving to a Machine Learning Approach which treats the prediction process as a classification problem. The classifier predicts the class of each edge whether it exists or doesn’t exist. Machine Learning Approaches have the benefit of adding all similarity indices needed as the feature set fed to the classifier. While in Score-based Approach when we used multiple features with associated weights, the performance was sensitive to the values of such weights. When machine learning is applied, the learning process is performed by the classifier which is fed by eight similarity indices representing connectivity, community, interaction and trust in social network. When indices are combined, a much higher accuracy than the previous Score-based Approach is obtained and hence enhancing the prediction accuracy. In order to evaluate the correctness of the proposed model, it has been applied on a real dataset of 2.974k users on the Twitter social network. Experiments show that using both classical and ensemble classifiers outperforms baseline algorithms when applied individually.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
gephi.github.io/toolkit/.
 
Literature
go back to reference Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230CrossRef Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230CrossRef
go back to reference Ahmed C, ElKorany A (2015) Enhancing link prediction in twitter using semantic user attributes. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining, pp 1155–1161, August 2015 Ahmed C, ElKorany A (2015) Enhancing link prediction in twitter using semantic user attributes. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining, pp 1155–1161, August 2015
go back to reference Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning. In: SDM’06: workshop on link analysis, counter-terrorism and security, April 2006 Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning. In: SDM’06: workshop on link analysis, counter-terrorism and security, April 2006
go back to reference Barbieri N, Bonchi F, Manco G (2014) Who to follow and why: link prediction with explanations. In: KDD’14 Barbieri N, Bonchi F, Manco G (2014) Who to follow and why: link prediction with explanations. In: KDD’14
go back to reference Bliss C, Frank M, Danforth C, Dodds P (2014) An evolutionary algorithm approach to link prediction in dynamic social networks. J Comput Sci 5:750–764MathSciNetCrossRef Bliss C, Frank M, Danforth C, Dodds P (2014) An evolutionary algorithm approach to link prediction in dynamic social networks. J Comput Sci 5:750–764MathSciNetCrossRef
go back to reference Fire M, Tenenboim L, Lesser O, Puzis R, Rokach L, Elovici Y (2011) Link prediction in social networks using computationally efficient topological features. In: Privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social computing (SocialCom), pp 73–80 Fire M, Tenenboim L, Lesser O, Puzis R, Rokach L, Elovici Y (2011) Link prediction in social networks using computationally efficient topological features. In: Privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social computing (SocialCom), pp 73–80
go back to reference Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11:10–18CrossRef Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11:10–18CrossRef
go back to reference Han S, Xu Y (2016) Link prediction in microblog network using supervised learning with multiple features. J Comput 11(1):72–82CrossRef Han S, Xu Y (2016) Link prediction in microblog network using supervised learning with multiple features. J Comput 11(1):72–82CrossRef
go back to reference Hasan M, Zaki M (2011) A survey of link prediction in social networks. In: Aggarwal C (ed) Social network data analytics. Springer, Berlin Hasan M, Zaki M (2011) A survey of link prediction in social networks. In: Aggarwal C (ed) Social network data analytics. Springer, Berlin
go back to reference Jang W, Kwak M (2014) A network link prediction model based on object-object match method. In: Proceedings of the southern association for information systems conference, Macon, GA, USA, March 21st–22nd, 2014 Jang W, Kwak M (2014) A network link prediction model based on object-object match method. In: Proceedings of the southern association for information systems conference, Macon, GA, USA, March 21st–22nd, 2014
go back to reference Jeh G, Widom J (2002) SimRank: a measure of structural-context similarity. In: Eighth ACM SIGKDD Jeh G, Widom J (2002) SimRank: a measure of structural-context similarity. In: Eighth ACM SIGKDD
go back to reference Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43CrossRefMATH Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43CrossRefMATH
go back to reference Kim J, Choy M, Kim D, Kang U (2014) Link prediction based on generalized cluster information. In: Proceedings of the companion publication of the 23rd international conference on World Wide Web companion. International World Wide Web Conferences Steering Committee, pp 317–318 Kim J, Choy M, Kim D, Kang U (2014) Link prediction based on generalized cluster information. In: Proceedings of the companion publication of the 23rd international conference on World Wide Web companion. International World Wide Web Conferences Steering Committee, pp 317–318
go back to reference Li F, He J, Huang G, Zhang Y, Shi Y (2014) A clustering-based link prediction method in social networks. In: 14th international conference on computational science. ICCS 2014, pp 432–442 Li F, He J, Huang G, Zhang Y, Shi Y (2014) A clustering-based link prediction method in social networks. In: 14th international conference on computational science. ICCS 2014, pp 432–442
go back to reference Liben-Nowell D, Kleinberg J (2003) The link prediction problem for social networks. In: Proceedings of CIKM’03. ACM Press, pp 556–559 Liben-Nowell D, Kleinberg J (2003) The link prediction problem for social networks. In: Proceedings of CIKM’03. ACM Press, pp 556–559
go back to reference Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inform Sci Technol 58:1019–1031CrossRef Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inform Sci Technol 58:1019–1031CrossRef
go back to reference Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, ACM Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, ACM
go back to reference Newman M (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64:025102CrossRef Newman M (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64:025102CrossRef
go back to reference Papadimitriou A, Symeonidis P, Manolopoulos Y (2012) Fast and accurate link prediction in social networking systems. J Syst Softw 85:2119–2132CrossRef Papadimitriou A, Symeonidis P, Manolopoulos Y (2012) Fast and accurate link prediction in social networking systems. J Syst Softw 85:2119–2132CrossRef
go back to reference Pavlov M, Ichise R (2007) Finding experts by link prediction in co-authorship networks. FEWS 290:42–55 Pavlov M, Ichise R (2007) Finding experts by link prediction in co-authorship networks. FEWS 290:42–55
go back to reference Rowe M, Stankovic M, Alani H (2012) Who will follow whom? Exploiting semantics for link prediction in attention-information networks. In: Proceedings of the 11th international conference on the semantic web—volume part I (ISWC’12) Rowe M, Stankovic M, Alani H (2012) Who will follow whom? Exploiting semantics for link prediction in attention-information networks. In: Proceedings of the 11th international conference on the semantic web—volume part I (ISWC’12)
go back to reference Sá HR, Prudêncio RB (2010) Supervised learning for link prediction in weighted networks. In: III international workshop on web and text intelligence Sá HR, Prudêncio RB (2010) Supervised learning for link prediction in weighted networks. In: III international workshop on web and text intelligence
go back to reference Salton G, McGill M (1986) Introduction to modern information retrieval. McGraw-Hill, New York CityMATH Salton G, McGill M (1986) Introduction to modern information retrieval. McGraw-Hill, New York CityMATH
go back to reference Symeonidis P, Tiakas E (2014) Transitive node similarity: predicting and recommending links in signed social networks. World Wide Web 17:743–776CrossRef Symeonidis P, Tiakas E (2014) Transitive node similarity: predicting and recommending links in signed social networks. World Wide Web 17:743–776CrossRef
go back to reference Symeonidis P, Tiakas E, Manolopoulos Y (2010) Transitive node similarity for link prediction in social networks with positive and negative links. In: RecSys Symeonidis P, Tiakas E, Manolopoulos Y (2010) Transitive node similarity for link prediction in social networks with positive and negative links. In: RecSys
go back to reference Valverde-Rebaza J, de Andrade Lopes A (2012a) Link prediction in complex networks based on cluster information. In: Advances in artificial intelligence, SBIA Valverde-Rebaza J, de Andrade Lopes A (2012a) Link prediction in complex networks based on cluster information. In: Advances in artificial intelligence, SBIA
go back to reference Valverde-Rebaza J, de Andrade Lopes A (2012b) Structural link prediction using community information on twitter. In: Computational aspects of social networks (CASoN), 2012 fourth international conference. IEEE, pp 132–137 Valverde-Rebaza J, de Andrade Lopes A (2012b) Structural link prediction using community information on twitter. In: Computational aspects of social networks (CASoN), 2012 fourth international conference. IEEE, pp 132–137
go back to reference Valverde-Rebaza J, de Andrade Lopes A (2013) Exploiting behaviors of communities of twitter users for link prediction. Soc Netw Anal Min 3(4):1063–1074CrossRef Valverde-Rebaza J, de Andrade Lopes A (2013) Exploiting behaviors of communities of twitter users for link prediction. Soc Netw Anal Min 3(4):1063–1074CrossRef
go back to reference Xiang E (2008) A survey on link prediction models for networked data. Department of Computer Science and Engineering, HKUST, Kowloon Xiang E (2008) A survey on link prediction models for networked data. Department of Computer Science and Engineering, HKUST, Kowloon
go back to reference Volkova S, Hsu WH Link prediction in social networks. Independent Project Volkova S, Hsu WH Link prediction in social networks. Independent Project
go back to reference Yantao J, Yuanzhuo W, Jingyuan L, Kai F, Xueqi C, Jianchen L (2013) Structural-interaction link prediction in microblogs. In: Proceedings of the 22nd international conference on World Wide Web companion. International World Wide Web Conferences Steering Committee, pp 193–194 Yantao J, Yuanzhuo W, Jingyuan L, Kai F, Xueqi C, Jianchen L (2013) Structural-interaction link prediction in microblogs. In: Proceedings of the 22nd international conference on World Wide Web companion. International World Wide Web Conferences Steering Committee, pp 193–194
go back to reference Yin D, Hong L, Xiong X, Davison B (2011) Link formation analysis in microblogs. In: ACM SIGIR Yin D, Hong L, Xiong X, Davison B (2011) Link formation analysis in microblogs. In: ACM SIGIR
go back to reference Zheleva E, Getoor L, Golbeck J, Kuter U (2010) Using friendship ties and family circles for link prediction. In: Giles L, Smith M, Yen J, Zhang H (eds) Advances in social network mining and analysis. Springer, Berlin, pp 97–113CrossRef Zheleva E, Getoor L, Golbeck J, Kuter U (2010) Using friendship ties and family circles for link prediction. In: Giles L, Smith M, Yen J, Zhang H (eds) Advances in social network mining and analysis. Springer, Berlin, pp 97–113CrossRef
go back to reference Zhu L, Lerman K (2014) A visibility-based model for link prediction in social media. In: ASE BIGDATA/SOCIALCOM/CYBERSECURITY conference Zhu L, Lerman K (2014) A visibility-based model for link prediction in social media. In: ASE BIGDATA/SOCIALCOM/CYBERSECURITY conference
Metadata
Title
A supervised learning approach to link prediction in Twitter
Authors
Cherry Ahmed
Abeer ElKorany
Reem Bahgat
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0333-1

Premium Partner