Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

10-06-2022 | Review

A survey on event and subevent detection from microblog data towards crisis management

Authors: Shatadru Roy Chowdhury, Srinka Basu, Ujjwal Maulik

Published in: International Journal of Data Science and Analytics

Login to get access
share
SHARE

Abstract

Social media data analysis is a popular research domain since the last decade. Detecting the events and sub-events from social media posts that require special attention is one of the key research problem in this domain with wide range of applications. Particularly in the field of crisis management, event and sub-event detection can be of great benefit assisting the public safety departments to plan for quick responses. In this paper, we review the existing researches in the field of event and sub-event identification from social media based microblog data for disaster management. The contribution of the paper includes the study of research papers from two different aspects - i) Computational Steps for performing a research on event and sub-event detection from social media data, ii) Computational Techniques briefly discussing the methods adopted in recent studies pertaining to event and sub-event detection and summarization. This study would help the future researches in the social media data analytics domain for crisis management.
Literature
1.
go back to reference Abhik, D., Toshniwal, D.: Sub-event detection during natural hazards using features of social media data. In: Proceedings of the 22nd International Conference on World Wide Web, WWW ’13 Companion, pp. 783–788. Association for Computing Machinery, New York, NY, USA (2013). https://​doi.​org/​10.​1145/​2487788.​2488046 Abhik, D., Toshniwal, D.: Sub-event detection during natural hazards using features of social media data. In: Proceedings of the 22nd International Conference on World Wide Web, WWW ’13 Companion, pp. 783–788. Association for Computing Machinery, New York, NY, USA (2013). https://​doi.​org/​10.​1145/​2487788.​2488046
3.
go back to reference Adedoyin-Olowe, M., Gaber, M.M., Stahl, F.: Trcm: A methodology for temporal analysis of evolving concepts in twitter. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 135–145. Springer, Berlin Heidelberg (2013) CrossRef Adedoyin-Olowe, M., Gaber, M.M., Stahl, F.: Trcm: A methodology for temporal analysis of evolving concepts in twitter. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 135–145. Springer, Berlin Heidelberg (2013) CrossRef
4.
6.
go back to reference Akbari, M., Hu, X., Liqiang, N., Chua, T.S.: From tweets to wellness: Wellness event detection from twitter streams. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 87–93. AAAI Press (2016) Akbari, M., Hu, X., Liqiang, N., Chua, T.S.: From tweets to wellness: Wellness event detection from twitter streams. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 87–93. AAAI Press (2016)
11.
go back to reference Alsaedi, N., Burnap, P.: Feature extraction and analysis for identifying disruptive events from social media. In: Proceedings of the 2015 IEEE/ACM Int. Conf. on Advances in Social Networks Analysis and Mining 2015, ASONAM ’15, pp. 1495–1502. Association for Computing Machinery, New York, NY, USA (2015). https://​doi.​org/​10.​1145/​2808797.​2808867 Alsaedi, N., Burnap, P.: Feature extraction and analysis for identifying disruptive events from social media. In: Proceedings of the 2015 IEEE/ACM Int. Conf. on Advances in Social Networks Analysis and Mining 2015, ASONAM ’15, pp. 1495–1502. Association for Computing Machinery, New York, NY, USA (2015). https://​doi.​org/​10.​1145/​2808797.​2808867
16.
go back to reference Anam, M., Shafiq, B., Shamail, S., Chun, S.A., Adam, N.: Discovering events from social media for emergency planning. In: Proceedings of the 20th Annual International Conference on Digital Government Research, dg.o 2019, p. 109–116. Association for Computing Machinery, New York, NY, USA (2019). https://​doi.​org/​10.​1145/​3325112.​3325213 Anam, M., Shafiq, B., Shamail, S., Chun, S.A., Adam, N.: Discovering events from social media for emergency planning. In: Proceedings of the 20th Annual International Conference on Digital Government Research, dg.o 2019, p. 109–116. Association for Computing Machinery, New York, NY, USA (2019). https://​doi.​org/​10.​1145/​3325112.​3325213
17.
go back to reference Ansah, J., Kang, W., Liu, L., Liu, J., Li, J.: Sensortree: Bursty propagation trees as sensors for protest event detection. In: Hacid, H., Cellary, W., Wang, H., Paik, H.Y., Zhou, R. (eds.) Web Information Systems Engineering - WISE 2018, pp. 281–296. Springer International Publishing, Cham (2018) CrossRef Ansah, J., Kang, W., Liu, L., Liu, J., Li, J.: Sensortree: Bursty propagation trees as sensors for protest event detection. In: Hacid, H., Cellary, W., Wang, H., Paik, H.Y., Zhou, R. (eds.) Web Information Systems Engineering - WISE 2018, pp. 281–296. Springer International Publishing, Cham (2018) CrossRef
19.
go back to reference Arbib, M.: The Handbook of Brain Theory and Neural Network, vol. 26 (2003) Arbib, M.: The Handbook of Brain Theory and Neural Network, vol. 26 (2003)
23.
go back to reference Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Sub-event detection from twitter streams as a sequence labeling problem. CoRR abs/1903.05396 (2019) Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Sub-event detection from twitter streams as a sequence labeling problem. CoRR abs/1903.05396 (2019)
27.
go back to reference Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. JMLR 3, 993–1022 (2003) Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. JMLR 3, 993–1022 (2003)
30.
go back to reference Chen, C., Terejanu, G.: Sub-event detection on twitter network. In: Iliadis, L., Maglogiannis, I., Plagianakos, V. (eds.) Artificial Intelligence Applications and Innovations, pp. 50–60. Springer International Publishing, Cham (2018) CrossRef Chen, C., Terejanu, G.: Sub-event detection on twitter network. In: Iliadis, L., Maglogiannis, I., Plagianakos, V. (eds.) Artificial Intelligence Applications and Innovations, pp. 50–60. Springer International Publishing, Cham (2018) CrossRef
33.
go back to reference Chen, G., Xu, N., Mao, W.: An encoder-memory-decoder framework for sub-event detection in social media. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18, pp. 1575–1578. Association for Computing Machinery, New York, NY, USA (2018). https://​doi.​org/​10.​1145/​3269206.​3269256 Chen, G., Xu, N., Mao, W.: An encoder-memory-decoder framework for sub-event detection in social media. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18, pp. 1575–1578. Association for Computing Machinery, New York, NY, USA (2018). https://​doi.​org/​10.​1145/​3269206.​3269256
34.
45.
go back to reference Fedoryszak, M., Frederick, B., Rajaram, V., Zhong, C.: Real-time event detection on social data streams. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’19, pp. 2774–2782. Association for Computing Machinery, New York, NY, USA (2019). https://​doi.​org/​10.​1145/​3292500.​3330689 Fedoryszak, M., Frederick, B., Rajaram, V., Zhong, C.: Real-time event detection on social data streams. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’19, pp. 2774–2782. Association for Computing Machinery, New York, NY, USA (2019). https://​doi.​org/​10.​1145/​3292500.​3330689
47.
go back to reference Gao, Y., Zhao, S., Yang, Y., Chua, T.S.: Multimedia social event detection in microblog. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MultiMedia Modeling, pp. 269–281. Springer International Publishing, Cham (2015) CrossRef Gao, Y., Zhao, S., Yang, Y., Chua, T.S.: Multimedia social event detection in microblog. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MultiMedia Modeling, pp. 269–281. Springer International Publishing, Cham (2015) CrossRef
50.
go back to reference Gerner, D.J., Abu-Jabr, R., Schrodt, P.A., Yilmaz, Ö.: Conflict and mediation event observations (cameo): A new event data framework for the analysis of foreign policy interactions (2002) Gerner, D.J., Abu-Jabr, R., Schrodt, P.A., Yilmaz, Ö.: Conflict and mediation event observations (cameo): A new event data framework for the analysis of foreign policy interactions (2002)
51.
go back to reference Goel, S., Ahuja, S., Subramanyam, A.V., Kumaraguru, P.: #visualhashtags: Visual summarization of social media events using mid-level visual elements. In: Proceedings of the 25th ACM International Conference on Multimedia, MM ’17, pp. 1434–1442. Association for Computing Machinery, New York, NY, USA (2017). https://​doi.​org/​10.​1145/​3123266.​3123407 Goel, S., Ahuja, S., Subramanyam, A.V., Kumaraguru, P.: #visualhashtags: Visual summarization of social media events using mid-level visual elements. In: Proceedings of the 25th ACM International Conference on Multimedia, MM ’17, pp. 1434–1442. Association for Computing Machinery, New York, NY, USA (2017). https://​doi.​org/​10.​1145/​3123266.​3123407
56.
go back to reference Guo, B., Ouyang, Y., Zhang, C., Zhang, J., Yu, Z., Wu, D., Wang, Y.: Crowdstory: fine-grained event storyline generation by fusion of multi-modal crowdsourced data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. (2017). https://​doi.​org/​10.​1145/​3130920 Guo, B., Ouyang, Y., Zhang, C., Zhang, J., Yu, Z., Wu, D., Wang, Y.: Crowdstory: fine-grained event storyline generation by fusion of multi-modal crowdsourced data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. (2017). https://​doi.​org/​10.​1145/​3130920
61.
go back to reference He, J., Liu, Y., Jia, Y.: Eventgraph based events detection in social media. In: Zhou, Q., Miao, Q., Wang, H., Xie, W., Wang, Y., Lu, Z. (eds.) Data Science, pp. 150–160. Springer Singapore, Singapore (2018) CrossRef He, J., Liu, Y., Jia, Y.: Eventgraph based events detection in social media. In: Zhou, Q., Miao, Q., Wang, H., Xie, W., Wang, Y., Lu, Z. (eds.) Data Science, pp. 150–160. Springer Singapore, Singapore (2018) CrossRef
65.
go back to reference hu, L., Li, J., Nie, L., li, X., Shao, C.: What happens next? future subevent prediction using contextual hierarchical lstm. AAAI (2017) hu, L., Li, J., Nie, L., li, X., Shao, C.: What happens next? future subevent prediction using contextual hierarchical lstm. AAAI (2017)
72.
go back to reference Jiang, S., Groves, W., Anzaroot, S., Jaimes, A.: Crisis sub-events on social media: a case study of wildfires (2019) Jiang, S., Groves, W., Anzaroot, S., Jaimes, A.: Crisis sub-events on social media: a case study of wildfires (2019)
82.
go back to reference Li, J., Gao, W., Wei, Z., Peng, B., Wong, K.F.: Using content-level structures for summarizing microblog repost trees. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2168–2178. Association for Computational Linguistics, Lisbon, Portugal (2015). https://​doi.​org/​10.​18653/​v1/​D15-1259 Li, J., Gao, W., Wei, Z., Peng, B., Wong, K.F.: Using content-level structures for summarizing microblog repost trees. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2168–2178. Association for Computational Linguistics, Lisbon, Portugal (2015). https://​doi.​org/​10.​18653/​v1/​D15-1259
86.
go back to reference Liu, Y., Zhou, B., Chen, F., Cheung, D.W.: Graph topic scan statistic for spatial event detection. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM ’16, p. 489–498. Association for Computing Machinery, New York, NY, USA (2016). https://​doi.​org/​10.​1145/​2983323.​2983744 Liu, Y., Zhou, B., Chen, F., Cheung, D.W.: Graph topic scan statistic for spatial event detection. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM ’16, p. 489–498. Association for Computing Machinery, New York, NY, USA (2016). https://​doi.​org/​10.​1145/​2983323.​2983744
87.
go back to reference Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Twitinfo: Aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, p. 227–236. Association for Computing Machinery, New York, NY, USA (2011). https://​doi.​org/​10.​1145/​1978942.​1978975 Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Twitinfo: Aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, p. 227–236. Association for Computing Machinery, New York, NY, USA (2011). https://​doi.​org/​10.​1145/​1978942.​1978975
88.
go back to reference McMinn, A.J., Jose, J.M.: Real-time entity-based event detection for twitter. In: J. Mothe, J. Savoy, J. Kamps, K. Pinel-Sauvagnat, G. Jones, E. San Juan, L. Capellato, N. Ferro (eds.) Experimental IR Meets Multilinguality, Multimodality, and Interaction, pp. 65–77. Springer International Publishing, Cham (2015) McMinn, A.J., Jose, J.M.: Real-time entity-based event detection for twitter. In: J. Mothe, J. Savoy, J. Kamps, K. Pinel-Sauvagnat, G. Jones, E. San Juan, L. Capellato, N. Ferro (eds.) Experimental IR Meets Multilinguality, Multimodality, and Interaction, pp. 65–77. Springer International Publishing, Cham (2015)
89.
go back to reference Meladianos, P., Nikolentzos, G., Rousseau, F., Stavrakas, Y., Vazirgiannis, M.: Degeneracy-based real-time sub-event detection in twitter stream. In: ICWSM (2015) Meladianos, P., Nikolentzos, G., Rousseau, F., Stavrakas, Y., Vazirgiannis, M.: Degeneracy-based real-time sub-event detection in twitter stream. In: ICWSM (2015)
90.
go back to reference Meladianos, P., Xypolopoulos, C., Nikolentzos, G., Vazirgiannis, M.: An optimization approach for sub-event detection and summarization in twitter. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) Advances in Information Retrieval, pp. 481–493. Springer International Publishing, Cham (2018) CrossRef Meladianos, P., Xypolopoulos, C., Nikolentzos, G., Vazirgiannis, M.: An optimization approach for sub-event detection and summarization in twitter. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) Advances in Information Retrieval, pp. 481–493. Springer International Publishing, Cham (2018) CrossRef
92.
go back to reference Mihalcea, R., Tarau, P.: TextRank: Bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411. Association for Computational Linguistics, Barcelona, Spain (2004) Mihalcea, R., Tarau, P.: TextRank: Bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411. Association for Computational Linguistics, Barcelona, Spain (2004)
98.
go back to reference Orzechowski, P., Boryczko, K.: Text mining with hybrid biclustering algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 102–113. Springer International Publishing, Cham (2016) Orzechowski, P., Boryczko, K.: Text mining with hybrid biclustering algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 102–113. Springer International Publishing, Cham (2016)
101.
110.
go back to reference Ranneries, S.B., Kalør, M.E., Nielsen, S.A., Dalgaard, L.N., Christensen, L.D., Kanhabua, N.: Wisdom of the local crowd: Detecting local events using social media data. In: Proceedings of the 8th ACM Conference on Web Science, WebSci ’16, p. 352–354. Association for Computing Machinery, New York, NY, USA (2016). https://​doi.​org/​10.​1145/​2908131.​2908197 Ranneries, S.B., Kalør, M.E., Nielsen, S.A., Dalgaard, L.N., Christensen, L.D., Kanhabua, N.: Wisdom of the local crowd: Detecting local events using social media data. In: Proceedings of the 8th ACM Conference on Web Science, WebSci ’16, p. 352–354. Association for Computing Machinery, New York, NY, USA (2016). https://​doi.​org/​10.​1145/​2908131.​2908197
113.
117.
118.
go back to reference Shao, M., Li, J., Chen, F., Huang, H., Zhang, S., Chen, X.: An efficient approach to event detection and forecasting in dynamic multivariate social media networks. In: Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pp. 1631–1639. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017). https://​doi.​org/​10.​1145/​3038912.​3052588 Shao, M., Li, J., Chen, F., Huang, H., Zhang, S., Chen, X.: An efficient approach to event detection and forecasting in dynamic multivariate social media networks. In: Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pp. 1631–1639. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017). https://​doi.​org/​10.​1145/​3038912.​3052588
127.
go back to reference Tung, K.C., Wang, E.T., Chen, A.L.P.: Mining event sequences from social media for election prediction. In: Perner, P. (ed.) Advances in Data Mining: Applications and Theoretical Aspects, pp. 266–281. Springer International Publishing, Cham (2016) CrossRef Tung, K.C., Wang, E.T., Chen, A.L.P.: Mining event sequences from social media for election prediction. In: Perner, P. (ed.) Advances in Data Mining: Applications and Theoretical Aspects, pp. 266–281. Springer International Publishing, Cham (2016) CrossRef
131.
go back to reference Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
135.
go back to reference Xing, C., Wang, Y., Liu, J., Huang, Y., Ma, W.: Hashtag-based sub-event discovery using mutually generative lda in twitter. In: AAAI (2016) Xing, C., Wang, Y., Liu, J., Huang, Y., Ma, W.: Hashtag-based sub-event discovery using mutually generative lda in twitter. In: AAAI (2016)
141.
go back to reference Yan, X., Guo, J., Lan, Y., Xu, J., Cheng, X.: A probabilistic model for bursty topic discovery in microblogs. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pp. 353–359. AAAI Press (2015) Yan, X., Guo, J., Lan, Y., Xu, J., Cheng, X.: A probabilistic model for bursty topic discovery in microblogs. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pp. 353–359. AAAI Press (2015)
144.
go back to reference Zhang, C., Zhou, G., Yuan, Q., Zhuang, H., Zheng, Y., Kaplan, L., Wang, S., Han, J.: Geoburst: Real-time local event detection in geo-tagged tweet streams. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 513–522. Association for Computing Machinery, New York, NY, USA (2016). https://​doi.​org/​10.​1145/​2911451.​2911519 Zhang, C., Zhou, G., Yuan, Q., Zhuang, H., Zheng, Y., Kaplan, L., Wang, S., Han, J.: Geoburst: Real-time local event detection in geo-tagged tweet streams. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 513–522. Association for Computing Machinery, New York, NY, USA (2016). https://​doi.​org/​10.​1145/​2911451.​2911519
149.
150.
go back to reference Zhou, Y., De, S., Moessner, K.: Real world city event extraction from twitter data streams. Procedia Computer Science 98, 443–448 (2016). In: The 7th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2016)/The 6th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2016)/Affiliated Workshops https://​doi.​org/​10.​1016/​j.​procs.​2016.​09.​069 Zhou, Y., De, S., Moessner, K.: Real world city event extraction from twitter data streams. Procedia Computer Science 98, 443–448 (2016). In: The 7th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2016)/The 6th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2016)/Affiliated Workshops https://​doi.​org/​10.​1016/​j.​procs.​2016.​09.​069
Metadata
Title
A survey on event and subevent detection from microblog data towards crisis management
Authors
Shatadru Roy Chowdhury
Srinka Basu
Ujjwal Maulik
Publication date
10-06-2022
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-022-00335-y

Premium Partner