Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: International Journal of Machine Learning and Cybernetics 2/2023

11-11-2022 | Original Article

A survey on federated learning: challenges and applications

Authors: Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, Wensheng Zhang

Published in: International Journal of Machine Learning and Cybernetics | Issue 2/2023

Login to get access
share
SHARE

Abstract

Federated learning (FL) is a secure distributed machine learning paradigm that addresses the issue of data silos in building a joint model. Its unique distributed training mode and the advantages of security aggregation mechanism are very suitable for various practical applications with strict privacy requirements. However, with the deployment of FL mode into practical application, some bottlenecks appear in the FL training process, which affects the performance and efficiency of the FL model in practical applications. Therefore, more researchers have paid attention to the challenges of FL and sought for various effective research methods to solve these current bottlenecks. And various research achievements of FL have been made to promote the intelligent development of all application areas with privacy restriction. This paper systematically introduces the current researches in FL from five aspects: the basics knowledge of FL, privacy and security protection mechanisms in FL, communication overhead challenges and heterogeneity problems of FL. Furthermore, we make a comprehensive summary of the research in practical applications and prospect the future research directions of FL.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Show more products
Literature
1.
go back to reference Zhang Z, Zhao M et al (2022) An efficient interval many-objective evolutionary algorithm for cloud task scheduling problem under uncertainty. Inf Sci 583:56–72 CrossRef Zhang Z, Zhao M et al (2022) An efficient interval many-objective evolutionary algorithm for cloud task scheduling problem under uncertainty. Inf Sci 583:56–72 CrossRef
2.
go back to reference Wang H, Xie F, Li J, Miu F (2022) Modelling, simulation and optimisation of medical enterprise warehousing process based on FlexSim model and greedy algorithm. Int J Bio-Inspired Comput 19(1):59–66 CrossRef Wang H, Xie F, Li J, Miu F (2022) Modelling, simulation and optimisation of medical enterprise warehousing process based on FlexSim model and greedy algorithm. Int J Bio-Inspired Comput 19(1):59–66 CrossRef
3.
go back to reference Cai X, Hu Z, Chen J (2020) A many-objective optimization recommendation algorithm based on knowledge mining. Inf Sci 537:148–161 CrossRef Cai X, Hu Z, Chen J (2020) A many-objective optimization recommendation algorithm based on knowledge mining. Inf Sci 537:148–161 CrossRef
4.
go back to reference Ren Y, Sun Y et al (2019) Adaptive Makeup Transfer via Bat Algorithm. Mathematics 7(3):273 CrossRef Ren Y, Sun Y et al (2019) Adaptive Makeup Transfer via Bat Algorithm. Mathematics 7(3):273 CrossRef
5.
go back to reference Yang Y, Cai J, Yang H, Zhao X (2021) Density clustering with divergence distance and automatic center selection. Inf Sci 596:414–438 CrossRef Yang Y, Cai J, Yang H, Zhao X (2021) Density clustering with divergence distance and automatic center selection. Inf Sci 596:414–438 CrossRef
6.
go back to reference Hemalatha B, Rajkumar N (2021) A modified machine learning classification for dental age assessment with effectual ACM-JO based segmentation. Int J Bio-Inspired Comput 17(2):95–104 CrossRef Hemalatha B, Rajkumar N (2021) A modified machine learning classification for dental age assessment with effectual ACM-JO based segmentation. Int J Bio-Inspired Comput 17(2):95–104 CrossRef
7.
go back to reference Cui Z, Zhao P et al (2021) An improved matrix factorization based model for many-objective optimization recommendation. Inf Sci 579:1–14 CrossRef Cui Z, Zhao P et al (2021) An improved matrix factorization based model for many-objective optimization recommendation. Inf Sci 579:1–14 CrossRef
8.
go back to reference Kuze N, Ishikura S et al (2021) Classification of diversified web crawler accesses inspired by biological adaptation. Int J Bio-Inspired Comput 17(3):165–173 CrossRef Kuze N, Ishikura S et al (2021) Classification of diversified web crawler accesses inspired by biological adaptation. Int J Bio-Inspired Comput 17(3):165–173 CrossRef
9.
go back to reference Mcmahan H et al (2017) Communication-Efficient Learning of Deep Networks from Decentralized Data. In: proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54: 1273–1282 Mcmahan H et al (2017) Communication-Efficient Learning of Deep Networks from Decentralized Data. In: proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54: 1273–1282
10.
go back to reference Yang Q, Liu Y, Chen T, Tong Y (2019) Federated Machine Learning: Concept and Applications. ACM Trans Intell Syst Technol 10(2):1–19 CrossRef Yang Q, Liu Y, Chen T, Tong Y (2019) Federated Machine Learning: Concept and Applications. ACM Trans Intell Syst Technol 10(2):1–19 CrossRef
11.
go back to reference Wang L, Meng Z, Yang L (2022) A multi-layer two-dimensional convolutional neural network for sentiment analysis. Int J Bio-Inspired Comput 19(2):97–107 CrossRef Wang L, Meng Z, Yang L (2022) A multi-layer two-dimensional convolutional neural network for sentiment analysis. Int J Bio-Inspired Comput 19(2):97–107 CrossRef
12.
go back to reference Li H (2021) Image error correction of hockey players’ step-by-step pull shooting based on Bayesian classification. Int J Comput Sci Math 14(2):185–195 CrossRef Li H (2021) Image error correction of hockey players’ step-by-step pull shooting based on Bayesian classification. Int J Comput Sci Math 14(2):185–195 CrossRef
13.
go back to reference Li A, Zhang L, Wang J, Han F, Li X (2022) Privacy-Preserving Efficient Federated-Learning Model Debugging. IEEE Trans Parallel Distrib Syst 33(10):2291–2303 CrossRef Li A, Zhang L, Wang J, Han F, Li X (2022) Privacy-Preserving Efficient Federated-Learning Model Debugging. IEEE Trans Parallel Distrib Syst 33(10):2291–2303 CrossRef
14.
go back to reference Pereira A, Mazza L, Pinto P et al (2022) Deep convolutional neural network applied to Trypanosoma cruzi detection in blood samples. Int J Bio-Inspired Comput 19(1):1–17 CrossRef Pereira A, Mazza L, Pinto P et al (2022) Deep convolutional neural network applied to Trypanosoma cruzi detection in blood samples. Int J Bio-Inspired Comput 19(1):1–17 CrossRef
15.
go back to reference Zhou Y, Sai Y, Yan L (2021) An improved extension neural network methodology for fault diagnosis of complex electromechanical system. Int J Bio-Inspired Comput 18(4):250–258 CrossRef Zhou Y, Sai Y, Yan L (2021) An improved extension neural network methodology for fault diagnosis of complex electromechanical system. Int J Bio-Inspired Comput 18(4):250–258 CrossRef
16.
go back to reference Liu J, Huang J, Zhou Y et al (2022) From distributed machine learning to federated learning: a survey. Knowl Inf Syst 64(4):885–917 CrossRef Liu J, Huang J, Zhou Y et al (2022) From distributed machine learning to federated learning: a survey. Knowl Inf Syst 64(4):885–917 CrossRef
17.
go back to reference Cui Z, Zhao Y, Cao Y et al (2021) Malicious Code Detection under 5G HetNets Based on a Multi-Objective RBM Model. IEEE Network 35(2):82–87 CrossRef Cui Z, Zhao Y, Cao Y et al (2021) Malicious Code Detection under 5G HetNets Based on a Multi-Objective RBM Model. IEEE Network 35(2):82–87 CrossRef
18.
go back to reference Liang B, Cai J, Yang H (2022) A new cell group clustering algorithm based on validation & correction mechanism. Expert Syst Appl 193:116410 CrossRef Liang B, Cai J, Yang H (2022) A new cell group clustering algorithm based on validation & correction mechanism. Expert Syst Appl 193:116410 CrossRef
19.
go back to reference Long T, Jia Q (2021) Matching Uncertain Renewable Supply with Electric Vehicle Charging Demand—A Bi-Level Event-Based Optimization Method. Complex Syst Model Simul 1(1):33–44 CrossRef Long T, Jia Q (2021) Matching Uncertain Renewable Supply with Electric Vehicle Charging Demand—A Bi-Level Event-Based Optimization Method. Complex Syst Model Simul 1(1):33–44 CrossRef
20.
go back to reference Zhou H, Yang G, Dai H, Liu G (2022) PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing. IEEE Trans Inf Forensics Secur 17:1905–1918 CrossRef Zhou H, Yang G, Dai H, Liu G (2022) PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing. IEEE Trans Inf Forensics Secur 17:1905–1918 CrossRef
21.
go back to reference Jiang J, Hu L et al (2020) BACombo-Bandwidth-Aware Decentralized Federated Learning. Electronics 9(3):440 CrossRef Jiang J, Hu L et al (2020) BACombo-Bandwidth-Aware Decentralized Federated Learning. Electronics 9(3):440 CrossRef
22.
go back to reference Wang C, Liu Z, Wei H, Chen L, Zhang H (2021) Hybrid Deep Learning Model for Short-Term Wind Speed Forecasting Based on Time Series Decomposition and Gated Recurrent Unit. Complex Syst Model Simul 1(4):308–321 CrossRef Wang C, Liu Z, Wei H, Chen L, Zhang H (2021) Hybrid Deep Learning Model for Short-Term Wind Speed Forecasting Based on Time Series Decomposition and Gated Recurrent Unit. Complex Syst Model Simul 1(4):308–321 CrossRef
23.
go back to reference Cui Z, Wen J, Lan Y et al (2022) Communication-efficient federated recommendation model based on many-objective evolutionary algorithm. Expert Syst Appl 201:116963 CrossRef Cui Z, Wen J, Lan Y et al (2022) Communication-efficient federated recommendation model based on many-objective evolutionary algorithm. Expert Syst Appl 201:116963 CrossRef
24.
go back to reference Zhang K, Song X, Zhang C, Yu C (2022) Challenges and future directions of secure federated learning: a survey. Front Comput Sci 16(5):165817 CrossRef Zhang K, Song X, Zhang C, Yu C (2022) Challenges and future directions of secure federated learning: a survey. Front Comput Sci 16(5):165817 CrossRef
25.
go back to reference Feng C, Liu B et al (2022) Blockchain-Empowered Decentralized Horizontal Federated Learning for 5G-Enabled UAVs. IEEE Trans Industr Inf 18(5):3582–3592 CrossRef Feng C, Liu B et al (2022) Blockchain-Empowered Decentralized Horizontal Federated Learning for 5G-Enabled UAVs. IEEE Trans Industr Inf 18(5):3582–3592 CrossRef
26.
go back to reference Dai M, Xu A, Huang Q, Zhang Z, Lin X (2021) Vertical federated DNN training. Phys Communication 49:101465 CrossRef Dai M, Xu A, Huang Q, Zhang Z, Lin X (2021) Vertical federated DNN training. Phys Communication 49:101465 CrossRef
27.
go back to reference Gu B, Xu A et al (2020) Privacy-Preserving Asynchronous Vertical Federated Learning Algorithms for Multiparty Collaborative Learning. arXiv preprint arXiv: 2008. 06233 Gu B, Xu A et al (2020) Privacy-Preserving Asynchronous Vertical Federated Learning Algorithms for Multiparty Collaborative Learning. arXiv preprint arXiv: 2008. 06233
28.
go back to reference Li B, Liang Y, Gan Z et al (2021) Research on multi-UAV task decision-making based on improved MADDPG algorithm and transfer learning. Int J Bio-Inspired Comput 18(2):82–91 CrossRef Li B, Liang Y, Gan Z et al (2021) Research on multi-UAV task decision-making based on improved MADDPG algorithm and transfer learning. Int J Bio-Inspired Comput 18(2):82–91 CrossRef
29.
go back to reference Guan J, Cai J, Bai H, You I (2021) Deep transfer learning-based network traffic classification for scarce dataset in 5G IoT systems. Int J Mach Learn Cybernet 12(11):3351–3365 CrossRef Guan J, Cai J, Bai H, You I (2021) Deep transfer learning-based network traffic classification for scarce dataset in 5G IoT systems. Int J Mach Learn Cybernet 12(11):3351–3365 CrossRef
30.
go back to reference Yang Y, Cai J, Yang H, Zhang J, Zhao X (2020) TAD: A trajectory clustering algorithm based on spatial-temporal density analysis. Expert Syst Appl 139:112846 CrossRef Yang Y, Cai J, Yang H, Zhang J, Zhao X (2020) TAD: A trajectory clustering algorithm based on spatial-temporal density analysis. Expert Syst Appl 139:112846 CrossRef
31.
go back to reference Xu J, Zhang Z et al (2021) A many-objective optimized task allocation scheduling model in cloud computing. Appl Intell 51(6):3293–3310 CrossRef Xu J, Zhang Z et al (2021) A many-objective optimized task allocation scheduling model in cloud computing. Appl Intell 51(6):3293–3310 CrossRef
32.
go back to reference Cai X, Geng S, Zhang J et al (2021) A Sharding Scheme-Based Many-Objective Optimization Algorithm for Enhancing Security in Blockchain-Enabled Industrial Internet of Things. IEEE Trans Industr Inf 17(11):7650–7658 CrossRef Cai X, Geng S, Zhang J et al (2021) A Sharding Scheme-Based Many-Objective Optimization Algorithm for Enhancing Security in Blockchain-Enabled Industrial Internet of Things. IEEE Trans Industr Inf 17(11):7650–7658 CrossRef
33.
go back to reference Cavusoglu U, Kokcam AH (2021) A new approach to design S-box generation algorithm based on genetic algorithm. Int J Bio-Inspired Comput 17(1):52–62 CrossRef Cavusoglu U, Kokcam AH (2021) A new approach to design S-box generation algorithm based on genetic algorithm. Int J Bio-Inspired Comput 17(1):52–62 CrossRef
34.
go back to reference Yao A (1982) Protocols for secure computations. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science pp. 160–164 Yao A (1982) Protocols for secure computations. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science pp. 160–164
35.
go back to reference Bogdanov D, Willemson J (2008) Sharemind: A Framework for Fast Privacy-Preserving Computations. In: Proceedings of European Symposium on Research in Computer Security, Springer, pp. 192–206 Bogdanov D, Willemson J (2008) Sharemind: A Framework for Fast Privacy-Preserving Computations. In: Proceedings of European Symposium on Research in Computer Security, Springer, pp. 192–206
36.
go back to reference Xiong L, Han X, Yang C, Shi Y (2022) Robust Reversible Watermarking in Encrypted Image With Secure Multi-Party Based on Lightweight Cryptography. IEEE Trans Circuits Syst Video Technol 32(1):75–91 CrossRef Xiong L, Han X, Yang C, Shi Y (2022) Robust Reversible Watermarking in Encrypted Image With Secure Multi-Party Based on Lightweight Cryptography. IEEE Trans Circuits Syst Video Technol 32(1):75–91 CrossRef
37.
go back to reference An J, Wang Z et al (2021) Know Where You are: A Practical Privacy-Preserving Semi-Supervised Indoor Positioning via Edge-Crowdsensing. IEEE Trans Netw Serv Manage 18(4):4875–4887 CrossRef An J, Wang Z et al (2021) Know Where You are: A Practical Privacy-Preserving Semi-Supervised Indoor Positioning via Edge-Crowdsensing. IEEE Trans Netw Serv Manage 18(4):4875–4887 CrossRef
39.
go back to reference Xu Y, Peng C, Tan W et al (2022) Non-interactive verifiable privacy-preserving federated learning. Future Generation Computer Systems 128:365–380 CrossRef Xu Y, Peng C, Tan W et al (2022) Non-interactive verifiable privacy-preserving federated learning. Future Generation Computer Systems 128:365–380 CrossRef
40.
go back to reference Geyer R, Klein T, Nabi M (2017) Differentially Private Federated Learning: A Client Level Perspective. arXiv preprint arXiv: 1712. 07557 Geyer R, Klein T, Nabi M (2017) Differentially Private Federated Learning: A Client Level Perspective. arXiv preprint arXiv: 1712. 07557
41.
go back to reference Huang J, Cheng X, Ji Z et al (2022) AFLPC: An Asynchronous Federated Learning Privacy-Preserving Computing Model Applied to 5G-V2X. Security and Communication Networks 2022: 9334943 Huang J, Cheng X, Ji Z et al (2022) AFLPC: An Asynchronous Federated Learning Privacy-Preserving Computing Model Applied to 5G-V2X. Security and Communication Networks 2022: 9334943
42.
go back to reference Xiong Z, Cai Z, Takabi D, Li W (2022) Privacy Threat and Defense for Federated Learning With Non-i.i.d. Data in AIoT. IEEE Trans Industr Inf 18(2):1310–1321 CrossRef Xiong Z, Cai Z, Takabi D, Li W (2022) Privacy Threat and Defense for Federated Learning With Non-i.i.d. Data in AIoT. IEEE Trans Industr Inf 18(2):1310–1321 CrossRef
43.
go back to reference Sattler F, Wiedemann S et al (2020) Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data. IEEE Trans Neural Networks Learn Syst 31(9):3400–3413 CrossRef Sattler F, Wiedemann S et al (2020) Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data. IEEE Trans Neural Networks Learn Syst 31(9):3400–3413 CrossRef
44.
go back to reference Taşkıran M, Yetiş S (2021) Deep learning based tobacco products classification. Int J Comput Sci Math 13(2):167–176 CrossRef Taşkıran M, Yetiş S (2021) Deep learning based tobacco products classification. Int J Comput Sci Math 13(2):167–176 CrossRef
45.
go back to reference Sun Z, Feng J, Yin L et al (2022) Fed-DFE: A Decentralized Function Encryption-Based Privacy-Preserving Scheme for Federated Learning. Cmc-Computers Mater Continua 71(1):1867–1886 CrossRef Sun Z, Feng J, Yin L et al (2022) Fed-DFE: A Decentralized Function Encryption-Based Privacy-Preserving Scheme for Federated Learning. Cmc-Computers Mater Continua 71(1):1867–1886 CrossRef
46.
go back to reference Fan T, Cui Z (2021) Adaptive differential privacy preserving based on multi-objective optimization in deep neural networks. Concurrency and Computation-Practice & Experience 33(20):e6367 CrossRef Fan T, Cui Z (2021) Adaptive differential privacy preserving based on multi-objective optimization in deep neural networks. Concurrency and Computation-Practice & Experience 33(20):e6367 CrossRef
47.
go back to reference Cai X, Zhang M et al (2019) Analyses of inverted generational distance for many-objective optimisation algorithms. Int J Bio-Inspired Comput 14(1):62–68 CrossRef Cai X, Zhang M et al (2019) Analyses of inverted generational distance for many-objective optimisation algorithms. Int J Bio-Inspired Comput 14(1):62–68 CrossRef
48.
go back to reference Li W, Ye X, Huang Y, Mahmoodi S (2022) Adaptive Dimensional Learning with a Tolerance Framework for the Differential Evolution Algorithm. Complex Syst Model Simul 2(1):59–77 CrossRef Li W, Ye X, Huang Y, Mahmoodi S (2022) Adaptive Dimensional Learning with a Tolerance Framework for the Differential Evolution Algorithm. Complex Syst Model Simul 2(1):59–77 CrossRef
49.
go back to reference Xi J, Zheng L (2021) Cuckoo search with dual-subpopulation and information-sharing strategy. Int J Comput Sci Math 14(4):315–327 CrossRef Xi J, Zheng L (2021) Cuckoo search with dual-subpopulation and information-sharing strategy. Int J Comput Sci Math 14(4):315–327 CrossRef
50.
go back to reference Wang W, Gan Y, Vong C, Chen C (2020) Homo-ELM: fully homomorphic extreme learning machine. Int J Mach Learn Cybernet 11(7):1531–1540 CrossRef Wang W, Gan Y, Vong C, Chen C (2020) Homo-ELM: fully homomorphic extreme learning machine. Int J Mach Learn Cybernet 11(7):1531–1540 CrossRef
51.
go back to reference Zhang X, Fu A, Wang H et al (2020) A Privacy-Preserving and Verifiable Federated Learning Scheme. In: proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC) pp. 1–6 Zhang X, Fu A, Wang H et al (2020) A Privacy-Preserving and Verifiable Federated Learning Scheme. In: proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC) pp. 1–6
52.
go back to reference Ma J, Naas S, Sigg S, Lyu X (2021) Privacy-preserving federated learning based on multi-key homomorphic encryption.arXiv preprint arXiv:2104. 06824 Ma J, Naas S, Sigg S, Lyu X (2021) Privacy-preserving federated learning based on multi-key homomorphic encryption.arXiv preprint arXiv:2104. 06824
53.
go back to reference Park J, Lim H (2022) Privacy-Preserving Federated Learning Using Homomorphic Encryption. Appl Sci 12(2):734 CrossRef Park J, Lim H (2022) Privacy-Preserving Federated Learning Using Homomorphic Encryption. Appl Sci 12(2):734 CrossRef
54.
go back to reference Zhang C, Li S, Xia J et al (2020) BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning. In: Proceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference, USENIX Association, USA, pp. 493–506 Zhang C, Li S, Xia J et al (2020) BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning. In: Proceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference, USENIX Association, USA, pp. 493–506
55.
go back to reference Cai X, Niu Y, Geng S et al (2020) An under-sampled software defect prediction method based on hybrid multi-objective cuckoo search. Concurrency and Computation-Practice & Experience 32(5):e5478 CrossRef Cai X, Niu Y, Geng S et al (2020) An under-sampled software defect prediction method based on hybrid multi-objective cuckoo search. Concurrency and Computation-Practice & Experience 32(5):e5478 CrossRef
56.
go back to reference Cui Z, Du L, Wang P et al (2019) Malicious code detection based on CNNs and multi-objective algorithm. J Parallel Distrib Comput 129:50–58 CrossRef Cui Z, Du L, Wang P et al (2019) Malicious code detection based on CNNs and multi-objective algorithm. J Parallel Distrib Comput 129:50–58 CrossRef
57.
go back to reference Chan P, He Z, Li H, Hsu C (2018) Data sanitization against adversarial label contamination based on data complexity. Int J Mach Learn Cybernet 9(6):1039–1052 CrossRef Chan P, He Z, Li H, Hsu C (2018) Data sanitization against adversarial label contamination based on data complexity. Int J Mach Learn Cybernet 9(6):1039–1052 CrossRef
58.
go back to reference Yang Y, Cai J, Yang H et al (2022) ISBFK-means: A new clustering algorithm based on influence space. Expert Syst Appl 201:117018 CrossRef Yang Y, Cai J, Yang H et al (2022) ISBFK-means: A new clustering algorithm based on influence space. Expert Syst Appl 201:117018 CrossRef
59.
go back to reference Tian Y, Zhang W, Simpson A, Jiang Z (2021) Defending Against Data Poisoning Attacks: From Distributed Learning to Federated Learning.The Computer Journal,bxab192 Tian Y, Zhang W, Simpson A, Jiang Z (2021) Defending Against Data Poisoning Attacks: From Distributed Learning to Federated Learning.The Computer Journal,bxab192
60.
go back to reference Qi Y, Hossain M, Nie J, Li X (2021) Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Generation Computer Systems-the International Journal of Escience 117:328–337 CrossRef Qi Y, Hossain M, Nie J, Li X (2021) Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Generation Computer Systems-the International Journal of Escience 117:328–337 CrossRef
61.
go back to reference Cui Z, Xue F, Zhang S et al (2020) A Hybrid BlockChain-Based Identity Authentication Scheme for Multi-WSN. IEEE Trans Serv Comput 13(2):241–251 Cui Z, Xue F, Zhang S et al (2020) A Hybrid BlockChain-Based Identity Authentication Scheme for Multi-WSN. IEEE Trans Serv Comput 13(2):241–251
62.
go back to reference Zhao Y, Chen J, Zhang J et al (2022) Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks. Concurrency and Computation: Practice and Experience 34(7):e5906 CrossRef Zhao Y, Chen J, Zhang J et al (2022) Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks. Concurrency and Computation: Practice and Experience 34(7):e5906 CrossRef
63.
go back to reference Li X, Cao S, Gao L, Wen L et al (2021) A Threshold-Control Generative Adversarial Network Method for Intelligent Fault Diagnosis. Complex Syst Model Simul 1(1):55–64 CrossRef Li X, Cao S, Gao L, Wen L et al (2021) A Threshold-Control Generative Adversarial Network Method for Intelligent Fault Diagnosis. Complex Syst Model Simul 1(1):55–64 CrossRef
64.
go back to reference Shi S, Hu C, Wang D, Zhu Y, Han Z (2022) Federated Anomaly Analytics for Local Model Poisoning Attack. IEEE J Sel Areas Commun 40(2):596–610 CrossRef Shi S, Hu C, Wang D, Zhu Y, Han Z (2022) Federated Anomaly Analytics for Local Model Poisoning Attack. IEEE J Sel Areas Commun 40(2):596–610 CrossRef
65.
go back to reference Zhai K, Ren Q, Wang L, Yan C (2022) Byzantine-robust federated learning via credibility assessment on non- IID data. Math Biosci Eng 19(2):1659–1676 MATHCrossRef Zhai K, Ren Q, Wang L, Yan C (2022) Byzantine-robust federated learning via credibility assessment on non- IID data. Math Biosci Eng 19(2):1659–1676 MATHCrossRef
67.
go back to reference Zhai K, Ren Q, Wang J, Yan C (2022) Byzantine-robust federated learning via credibility assessment on non-IID data. Math Biosci Eng 19(2):1659–1676 MATHCrossRef Zhai K, Ren Q, Wang J, Yan C (2022) Byzantine-robust federated learning via credibility assessment on non-IID data. Math Biosci Eng 19(2):1659–1676 MATHCrossRef
68.
go back to reference Zhang M, Mo L (2021) MGWHD-SVM: maximum weighted heteroscedastic migration learning algorithm. Int J Comput Sci Math 14(1):89–106 CrossRef Zhang M, Mo L (2021) MGWHD-SVM: maximum weighted heteroscedastic migration learning algorithm. Int J Comput Sci Math 14(1):89–106 CrossRef
70.
go back to reference McMahan H, Moore E, Ramage D, Arcas B (2016) Federated Learning of Deep Networks using Model Averaging.arXiv preprint arXiv:1602. 05629 McMahan H, Moore E, Ramage D, Arcas B (2016) Federated Learning of Deep Networks using Model Averaging.arXiv preprint arXiv:1602. 05629
71.
go back to reference Liu W, Chen L, Chen Y, Zhang W (2020) Accelerating Federated Learning via Momentum Gradient Descent. IEEE Trans Parallel Distrib Syst 31(8):1754–1766 CrossRef Liu W, Chen L, Chen Y, Zhang W (2020) Accelerating Federated Learning via Momentum Gradient Descent. IEEE Trans Parallel Distrib Syst 31(8):1754–1766 CrossRef
72.
go back to reference Wu X, Zhang Y, Shi M et al (2022) An adaptive federated learning scheme with differential privacy preserving. Future Generation Computer Systems 127:362–372 CrossRef Wu X, Zhang Y, Shi M et al (2022) An adaptive federated learning scheme with differential privacy preserving. Future Generation Computer Systems 127:362–372 CrossRef
73.
go back to reference Wu H, Wang P (2021) Fast-Convergent Federated Learning With Adaptive Weighting. IEEE Trans Cogn Commun Netw 7(4):1078–1088 CrossRef Wu H, Wang P (2021) Fast-Convergent Federated Learning With Adaptive Weighting. IEEE Trans Cogn Commun Netw 7(4):1078–1088 CrossRef
74.
go back to reference Bao W, Wu C et al (2021) Edge Computing-Based Joint Client Selection and Networking Scheme for Federated Learning in Vehicular IoT. China Commun 18(6):39–52 CrossRef Bao W, Wu C et al (2021) Edge Computing-Based Joint Client Selection and Networking Scheme for Federated Learning in Vehicular IoT. China Commun 18(6):39–52 CrossRef
75.
go back to reference Hu M, Wu D, Zhou Y et al (2020) Incentive-Aware Autonomous Client Participation in Federated Learning. IEEE Trans Parallel Distrib Syst 33(10):2612–2627 CrossRef Hu M, Wu D, Zhou Y et al (2020) Incentive-Aware Autonomous Client Participation in Federated Learning. IEEE Trans Parallel Distrib Syst 33(10):2612–2627 CrossRef
76.
go back to reference Liu S, Yu G, Yin R, Yuan J, Shen L, Liu C (2022) Joint Model Pruning and Device Selection for Communication-Efficient Federated Edge Learning. IEEE Trans Commun 70(1):231–244 CrossRef Liu S, Yu G, Yin R, Yuan J, Shen L, Liu C (2022) Joint Model Pruning and Device Selection for Communication-Efficient Federated Edge Learning. IEEE Trans Commun 70(1):231–244 CrossRef
77.
go back to reference Deng Y, Lyu F, Ren J et al (2022) AUCTION: Automated and Quality-Aware Client Selection Framework for Efficient Federated Learning. IEEE Trans Parallel Distrib Syst 33(8):1996–2009 CrossRef Deng Y, Lyu F, Ren J et al (2022) AUCTION: Automated and Quality-Aware Client Selection Framework for Efficient Federated Learning. IEEE Trans Parallel Distrib Syst 33(8):1996–2009 CrossRef
78.
go back to reference Liao Z, Li S (2021) Solving Nonlinear Equations Systems with an Enhanced Reinforcement Learning Based Differential Evolution. Complex Syst Model Simul 2(1):78–95 CrossRef Liao Z, Li S (2021) Solving Nonlinear Equations Systems with an Enhanced Reinforcement Learning Based Differential Evolution. Complex Syst Model Simul 2(1):78–95 CrossRef
79.
go back to reference Luo L, Zhao N, Lodewijks G (2021) Scheduling Storage Process of Shuttle-Based Storage and Retrieval Systems Based on Reinforcement Learning. Complex Syst Model Simul 1(2):131–144 CrossRef Luo L, Zhao N, Lodewijks G (2021) Scheduling Storage Process of Shuttle-Based Storage and Retrieval Systems Based on Reinforcement Learning. Complex Syst Model Simul 1(2):131–144 CrossRef
80.
go back to reference Lai F, Zhu X, Madhyastha H, Chowdhury M (2021) Oort: Efficient federated learning via guided participant selection. In: Proceedings of the 15th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021, pp. 19–35 Lai F, Zhu X, Madhyastha H, Chowdhury M (2021) Oort: Efficient federated learning via guided participant selection. In: Proceedings of the 15th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021, pp. 19–35
81.
go back to reference Nishio T, Yonetani R (2019) Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In: Proceedings of ICC 2019–2019 IEEE International Conference on Communications (ICC) pp. 1–7 Nishio T, Yonetani R (2019) Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In: Proceedings of ICC 2019–2019 IEEE International Conference on Communications (ICC) pp. 1–7
82.
go back to reference Du C, Xiao J, Guo W (2022) Bandwidth constrained client selection and scheduling for federated learning over SD-WAN. IET Commun 16(2):187–194 CrossRef Du C, Xiao J, Guo W (2022) Bandwidth constrained client selection and scheduling for federated learning over SD-WAN. IET Commun 16(2):187–194 CrossRef
83.
go back to reference Gong W, Liao Z, Mi X et al (2021) Nonlinear Equations Solving with Intelligent Optimization Algorithms: A Survey. Complex Syst Model Simul 1(1):15–32 CrossRef Gong W, Liao Z, Mi X et al (2021) Nonlinear Equations Solving with Intelligent Optimization Algorithms: A Survey. Complex Syst Model Simul 1(1):15–32 CrossRef
84.
go back to reference Zhao F, Di S, Cao J et al (2021) A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems. Complex Syst Model Simul 1(2):91–108 CrossRef Zhao F, Di S, Cao J et al (2021) A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems. Complex Syst Model Simul 1(2):91–108 CrossRef
85.
go back to reference Li J, Cao F, Cheng H, Qian Y (2021) Learning the number of filters in convolutional neural networks. Int J Bio-Inspired Comput 17(2):75–84 CrossRef Li J, Cao F, Cheng H, Qian Y (2021) Learning the number of filters in convolutional neural networks. Int J Bio-Inspired Comput 17(2):75–84 CrossRef
86.
go back to reference Hu Y, Yan X (2021) Neural network-assisted expensive optimisation algorithm for pollution source rapid positioning of drinking water. Int J Bio-Inspired Comput 17(4):227–235 CrossRef Hu Y, Yan X (2021) Neural network-assisted expensive optimisation algorithm for pollution source rapid positioning of drinking water. Int J Bio-Inspired Comput 17(4):227–235 CrossRef
88.
go back to reference Lu X, Liao Y, Lio P, Pan H (2020) An Asynchronous Federated Learning Mechanism for Edge Network Computing. J Comput Res Dev 57(12):2571–2582 Lu X, Liao Y, Lio P, Pan H (2020) An Asynchronous Federated Learning Mechanism for Edge Network Computing. J Comput Res Dev 57(12):2571–2582
89.
go back to reference Li C, Li G, Varshney P (2021) Communication-Efficient Federated Learning Based on Compressed Sensing. IEEE Internet of Things Journal 8(20):15531–15541 CrossRef Li C, Li G, Varshney P (2021) Communication-Efficient Federated Learning Based on Compressed Sensing. IEEE Internet of Things Journal 8(20):15531–15541 CrossRef
90.
go back to reference Cheng X, You M, Ma X (2021) Bi-level optimisation model of modular product family with adaptability consideration. Int J Comput Sci Math 14(4):357–368 CrossRef Cheng X, You M, Ma X (2021) Bi-level optimisation model of modular product family with adaptability consideration. Int J Comput Sci Math 14(4):357–368 CrossRef
92.
go back to reference Cui Z, Zhao L, Zeng Y et al (2021) A Novel PIO Algorithm with multiple selection strategies for many-objective optimization problems. Complex Syst Model Simul 4(1):291–307 CrossRef Cui Z, Zhao L, Zeng Y et al (2021) A Novel PIO Algorithm with multiple selection strategies for many-objective optimization problems. Complex Syst Model Simul 4(1):291–307 CrossRef
93.
go back to reference Cai X, Wang P et al (2019) Multi-Objective Three-Dimensional DV-Hop Localization Algorithm With NSGA-II. IEEE Sens J 19(21):10003–10015 CrossRef Cai X, Wang P et al (2019) Multi-Objective Three-Dimensional DV-Hop Localization Algorithm With NSGA-II. IEEE Sens J 19(21):10003–10015 CrossRef
94.
go back to reference Hou Z, Hou J (2021) Joint estimation of battery state-of-charge based on the genetic algorithm - adaptive unscented Kalman filter. Int J Comput Sci Math 14(1):1–16 CrossRef Hou Z, Hou J (2021) Joint estimation of battery state-of-charge based on the genetic algorithm - adaptive unscented Kalman filter. Int J Comput Sci Math 14(1):1–16 CrossRef
95.
go back to reference Wang P, Xue F, Li H et al (2019) A Multi-Objective DV-Hop Localization Algorithm Based on NSGA-II in Internet of Things. Mathematics 7(2):184 CrossRef Wang P, Xue F, Li H et al (2019) A Multi-Objective DV-Hop Localization Algorithm Based on NSGA-II in Internet of Things. Mathematics 7(2):184 CrossRef
96.
go back to reference Qiao K, Liang J, Qu B et al (2022) Differential Evolution with Level-Based Learning Mechanism. Complex Syst Model Simul 2(1):35–58 CrossRef Qiao K, Liang J, Qu B et al (2022) Differential Evolution with Level-Based Learning Mechanism. Complex Syst Model Simul 2(1):35–58 CrossRef
97.
go back to reference Zhu H, Jin Y (2020) Multi-Objective Evolutionary Federated Learning. IEEE Trans Neural Networks Learn Syst 31(4):1310–1322 CrossRef Zhu H, Jin Y (2020) Multi-Objective Evolutionary Federated Learning. IEEE Trans Neural Networks Learn Syst 31(4):1310–1322 CrossRef
98.
go back to reference Lan Y, Xie L, Cai X, Wang L (2022) A many-objective evolutionary algorithm based on integrated strategy for skin cancer detection. KSII Trans Internet Inf Syst 16(1):80–96 Lan Y, Xie L, Cai X, Wang L (2022) A many-objective evolutionary algorithm based on integrated strategy for skin cancer detection. KSII Trans Internet Inf Syst 16(1):80–96
99.
go back to reference Wang Q, Li Q et al (2021) Efficient federated learning for fault diagnosis in industrial cloud-edge computing. Computing 103(10):2319–2337 CrossRef Wang Q, Li Q et al (2021) Efficient federated learning for fault diagnosis in industrial cloud-edge computing. Computing 103(10):2319–2337 CrossRef
101.
go back to reference Wang C, Yang Y, Zhou P (2021) Towards Efficient Scheduling of Federated Mobile Devices Under Computational and Statistical Heterogeneity. IEEE Trans Parallel Distrib Syst 32(2):394–410 CrossRef Wang C, Yang Y, Zhou P (2021) Towards Efficient Scheduling of Federated Mobile Devices Under Computational and Statistical Heterogeneity. IEEE Trans Parallel Distrib Syst 32(2):394–410 CrossRef
102.
go back to reference Taïk A, Mlika Z, Cherkaoui S (2022) Data-Aware Device Scheduling for Federated Edge Learning. IEEE Trans Cogn Commun Netw 8(1):408–421 CrossRef Taïk A, Mlika Z, Cherkaoui S (2022) Data-Aware Device Scheduling for Federated Edge Learning. IEEE Trans Cogn Commun Netw 8(1):408–421 CrossRef
103.
go back to reference Hu K, Wu J, Weng L (2021) A novel federated learning approach based on the confidence of federated Kalman filters. Int J Mach Learn Cybernet 12(12):3607–3627 CrossRef Hu K, Wu J, Weng L (2021) A novel federated learning approach based on the confidence of federated Kalman filters. Int J Mach Learn Cybernet 12(12):3607–3627 CrossRef
105.
go back to reference Mills J, Hu J, Min G (2022) Multi-Task Federated Learning for Personalised Deep Neural Networks in Edge Computing. IEEE Trans Parallel Distrib Syst 33(3):630–641 CrossRef Mills J, Hu J, Min G (2022) Multi-Task Federated Learning for Personalised Deep Neural Networks in Edge Computing. IEEE Trans Parallel Distrib Syst 33(3):630–641 CrossRef
106.
go back to reference Ni X, Shen X, Zhao H (2022) Federated optimization via knowledge codistillation. Expert Syst Appl 191:116310 CrossRef Ni X, Shen X, Zhao H (2022) Federated optimization via knowledge codistillation. Expert Syst Appl 191:116310 CrossRef
107.
go back to reference Yang H, He H, Zhang W, Cao X (2021) FedSteg: A Federated Transfer Learning Framework for Secure Image Steganalysis. IEEE Trans Netw Sci Eng 8(2):1084–1094 CrossRef Yang H, He H, Zhang W, Cao X (2021) FedSteg: A Federated Transfer Learning Framework for Secure Image Steganalysis. IEEE Trans Netw Sci Eng 8(2):1084–1094 CrossRef
108.
go back to reference Liu S, Wang J, Zhang W (2022) Federated personalized random forest for human activity recognition. Math Biosci Eng 19(1):953–971 MATHCrossRef Liu S, Wang J, Zhang W (2022) Federated personalized random forest for human activity recognition. Math Biosci Eng 19(1):953–971 MATHCrossRef
109.
go back to reference Rao C, Li R (2021) Research on prediction method on RUL of motor of CNC machine based on deep learning. Int J Comput Sci Math 14(4):338–346 CrossRef Rao C, Li R (2021) Research on prediction method on RUL of motor of CNC machine based on deep learning. Int J Comput Sci Math 14(4):338–346 CrossRef
111.
go back to reference Xu X, Peng H, Bhuiyan M et al (2022) Privacy-Preserving Federated Depression Detection From Multisource Mobile Health Data. IEEE Trans Industr Inf 18(7):4788–4797 CrossRef Xu X, Peng H, Bhuiyan M et al (2022) Privacy-Preserving Federated Depression Detection From Multisource Mobile Health Data. IEEE Trans Industr Inf 18(7):4788–4797 CrossRef
112.
go back to reference Ouyang L, Yuan Y, Cao Y, Wang F (2021) A novel framework of collaborative early warning for COVID-19 based on blockchain and smart contracts. Inf Sci 570:124–143 CrossRef Ouyang L, Yuan Y, Cao Y, Wang F (2021) A novel framework of collaborative early warning for COVID-19 based on blockchain and smart contracts. Inf Sci 570:124–143 CrossRef
113.
go back to reference Dayan I, Poth H, Zhong A et al (2021) Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med 27(10):1735– CrossRef Dayan I, Poth H, Zhong A et al (2021) Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med 27(10):1735– CrossRef
114.
go back to reference Ma Z, Zhang M, Liu J et al (2022) An Assisted Diagnosis Model for Cancer Patients Based on Federated Learning. Front Oncol 12:860532 CrossRef Ma Z, Zhang M, Liu J et al (2022) An Assisted Diagnosis Model for Cancer Patients Based on Federated Learning. Front Oncol 12:860532 CrossRef
115.
go back to reference Mabrouk M, Afify H, Marzouk S (2021) 3D reconstruction of structural magnetic resonance neuroimaging based on computer aided detection. Int J Bio-Inspired Comput 17(3):174–181 CrossRef Mabrouk M, Afify H, Marzouk S (2021) 3D reconstruction of structural magnetic resonance neuroimaging based on computer aided detection. Int J Bio-Inspired Comput 17(3):174–181 CrossRef
116.
go back to reference Cai X, Hu Z, Zhao P et al (2020) A hybrid recommendation system with many-objective evolutionary algorithm. Expert Syst Appl 159:113648 CrossRef Cai X, Hu Z, Zhao P et al (2020) A hybrid recommendation system with many-objective evolutionary algorithm. Expert Syst Appl 159:113648 CrossRef
117.
go back to reference Xie L, Hu Z, Cai X et al (2021) Explainable recommendation based on knowledge graph and multi-objective optimization. Complex & Intelligent Systems 7(3):1241–1252 CrossRef Xie L, Hu Z, Cai X et al (2021) Explainable recommendation based on knowledge graph and multi-objective optimization. Complex & Intelligent Systems 7(3):1241–1252 CrossRef
118.
go back to reference Cui Z, Xu X, Xue F et al (2020) Personalized Recommendation System Based on Collaborative Filtering for IoT Scenarios. IEEE Trans Serv Comput 13(4):685–695 CrossRef Cui Z, Xu X, Xue F et al (2020) Personalized Recommendation System Based on Collaborative Filtering for IoT Scenarios. IEEE Trans Serv Comput 13(4):685–695 CrossRef
119.
go back to reference Lin G, Liang F, Pan W, Ming Z (2021) FedRec: Federated Recommendation With Explicit Feedback. IEEE Intell Syst 36(5):21–29 CrossRef Lin G, Liang F, Pan W, Ming Z (2021) FedRec: Federated Recommendation With Explicit Feedback. IEEE Intell Syst 36(5):21–29 CrossRef
121.
go back to reference Du Y, Zhou D, Xie Y, Shi J, Gong M (2021) Federated matrix factorization for privacy-preserving recommender systems. Appl Soft Comput 111:107700 CrossRef Du Y, Zhou D, Xie Y, Shi J, Gong M (2021) Federated matrix factorization for privacy-preserving recommender systems. Appl Soft Comput 111:107700 CrossRef
122.
go back to reference Duan S, Zhang D, Wang Y et al (2020) JointRec: A Deep-Learning-Based Joint Cloud Video Recommendation Framework for Mobile IoT. IEEE Internet of Things Journal 7(3):1655–1666 CrossRef Duan S, Zhang D, Wang Y et al (2020) JointRec: A Deep-Learning-Based Joint Cloud Video Recommendation Framework for Mobile IoT. IEEE Internet of Things Journal 7(3):1655–1666 CrossRef
123.
go back to reference Caballero A, Garcia-Valverde T, Pereniguez F, Botia J (2016) Activity recommendation in intelligent campus environments based on the Eduroam federation. J Ambient Intell Smart Environ 8(1):35–46 CrossRef Caballero A, Garcia-Valverde T, Pereniguez F, Botia J (2016) Activity recommendation in intelligent campus environments based on the Eduroam federation. J Ambient Intell Smart Environ 8(1):35–46 CrossRef
124.
go back to reference Muhammad K, Wang Q, O’Reilly-Morgan D et al (2020) FedFast: Going beyond Average for Faster Training of Federated Recommender Systems. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020, pp. 1234–1242 Muhammad K, Wang Q, O’Reilly-Morgan D et al (2020) FedFast: Going beyond Average for Faster Training of Federated Recommender Systems. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020, pp. 1234–1242
125.
go back to reference Wang F, Xu X, Chen M et al (2021) Simulation Research on Fire Evacuation of Large Public Buildings Based on Building Information Modeling. Complex Syst Model Simul 1(2):122–130 CrossRef Wang F, Xu X, Chen M et al (2021) Simulation Research on Fire Evacuation of Large Public Buildings Based on Building Information Modeling. Complex Syst Model Simul 1(2):122–130 CrossRef
126.
go back to reference Shen Y, Yu L, Li J (2022) Robust Electric Vehicle Routing Problem with Time Windows under Demand Uncertainty and Weight-Related Energy Consumption. Complex Syst Model Simul 2(1):18–34 CrossRef Shen Y, Yu L, Li J (2022) Robust Electric Vehicle Routing Problem with Time Windows under Demand Uncertainty and Weight-Related Energy Consumption. Complex Syst Model Simul 2(1):18–34 CrossRef
127.
go back to reference Zhang J, Zhu Z, Chang Y et al (2019) Demand Estimation of Water Resources based on Coupling Algorithm. In: Proceedings of the 31st Chinese Control and Decision Conference (2019 CCDC), pp. 714–719 Zhang J, Zhu Z, Chang Y et al (2019) Demand Estimation of Water Resources based on Coupling Algorithm. In: Proceedings of the 31st Chinese Control and Decision Conference (2019 CCDC), pp. 714–719
128.
go back to reference Wang H, Wang W, Cui Z et al (2018) A new dynamic firefly algorithm for demand estimation of water resources. Inf Sci 438:95–106 CrossRef Wang H, Wang W, Cui Z et al (2018) A new dynamic firefly algorithm for demand estimation of water resources. Inf Sci 438:95–106 CrossRef
129.
go back to reference Lu H, Dong X, Cao X (2022) Motion Model of Floating Weather Sensing Node for Typhoon Detection. Complex Syst Model Simul 2(1):96–111 CrossRef Lu H, Dong X, Cao X (2022) Motion Model of Floating Weather Sensing Node for Typhoon Detection. Complex Syst Model Simul 2(1):96–111 CrossRef
130.
go back to reference Zhang Y, Xin D (2021) Short-term traffic flow prediction model based on deep learning regression algorithm. Int J Comput Sci Math 14(2):155–166 CrossRef Zhang Y, Xin D (2021) Short-term traffic flow prediction model based on deep learning regression algorithm. Int J Comput Sci Math 14(2):155–166 CrossRef
131.
go back to reference Jiang C, Li R, Chen J et al (2021) Modelling the green supply chain of hotels based on front-back stage decoupling: perspective of ant colony labour division. Int J Bio-Inspired Comput 18(2):176–188 CrossRef Jiang C, Li R, Chen J et al (2021) Modelling the green supply chain of hotels based on front-back stage decoupling: perspective of ant colony labour division. Int J Bio-Inspired Comput 18(2):176–188 CrossRef
132.
go back to reference Jiang J, Kantarci B, Oktug S, Soyata T (2020) Federated learning in smart city sensing: Challenges and opportunities. Sensors 20(21):6230 CrossRef Jiang J, Kantarci B, Oktug S, Soyata T (2020) Federated learning in smart city sensing: Challenges and opportunities. Sensors 20(21):6230 CrossRef
133.
go back to reference Putra K, Chen H, Prayitno (2021) Federated compressed learning edge computing framework with ensuring data privacy for pm2.5 prediction in smart city sensing applications. Sensors 21(13):4586 CrossRef Putra K, Chen H, Prayitno (2021) Federated compressed learning edge computing framework with ensuring data privacy for pm2.5 prediction in smart city sensing applications. Sensors 21(13):4586 CrossRef
135.
go back to reference Liu L, Song M, Wang X et al (2021) Aircraft pushback slot allocation bi-level programming model based on congestion pricing. Int J Comput Sci Math 14(3):249–262 CrossRef Liu L, Song M, Wang X et al (2021) Aircraft pushback slot allocation bi-level programming model based on congestion pricing. Int J Comput Sci Math 14(3):249–262 CrossRef
136.
go back to reference Li Y, Chen C, Liu N, Huang H et al (2021) A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus. IEEE Network 35(1):234–241 CrossRef Li Y, Chen C, Liu N, Huang H et al (2021) A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus. IEEE Network 35(1):234–241 CrossRef
137.
go back to reference Cheng K, Fan T, Jin Y et al (2021) SecureBoost: A Lossless Federated Learning Framework. IEEE Intell Syst 36(6):87–98 CrossRef Cheng K, Fan T, Jin Y et al (2021) SecureBoost: A Lossless Federated Learning Framework. IEEE Intell Syst 36(6):87–98 CrossRef
138.
go back to reference Salawudeen A, Umoh I, Sadiq B, Oyenike O, Mu’azu M (2022) An adaptive ant colony optimisation for improved lane detection in intelligent automobile vehicles. Int J Bio-Inspired Comput 19(2):108–123 CrossRef Salawudeen A, Umoh I, Sadiq B, Oyenike O, Mu’azu M (2022) An adaptive ant colony optimisation for improved lane detection in intelligent automobile vehicles. Int J Bio-Inspired Comput 19(2):108–123 CrossRef
139.
go back to reference Chen Z, Chen Z, Geng Y (2022) Modelling and empirical analysis of the VMI-3PL system of cloud service platform in industry supply chain. Int J Comput Sci Math 15(1):60–71 CrossRef Chen Z, Chen Z, Geng Y (2022) Modelling and empirical analysis of the VMI-3PL system of cloud service platform in industry supply chain. Int J Comput Sci Math 15(1):60–71 CrossRef
140.
go back to reference Ye Y, Li S, Liu F et al (2020) EdgeFed: Optimized Federated Learning Based on Edge Computing. IEEE Access 8:209191–209198 CrossRef Ye Y, Li S, Liu F et al (2020) EdgeFed: Optimized Federated Learning Based on Edge Computing. IEEE Access 8:209191–209198 CrossRef
141.
go back to reference Jiang H, Liu M, Yang B et al (2020) Customized Federated Learning for accelerated edge computing with heterogeneous task targets. Comput Netw 183:107569 CrossRef Jiang H, Liu M, Yang B et al (2020) Customized Federated Learning for accelerated edge computing with heterogeneous task targets. Comput Netw 183:107569 CrossRef
142.
go back to reference Wang Q, Li Q, Wang K et al (2021) Efficient federated learning for fault diagnosis in industrial cloud-edge computing. Computing 103(10):2319–2337 CrossRef Wang Q, Li Q, Wang K et al (2021) Efficient federated learning for fault diagnosis in industrial cloud-edge computing. Computing 103(10):2319–2337 CrossRef
143.
go back to reference Liu H, Zhang S, Zhang P et al (2021) Blockchain and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge Computing. IEEE Trans Veh Technol 70(6):6073–6084 CrossRef Liu H, Zhang S, Zhang P et al (2021) Blockchain and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge Computing. IEEE Trans Veh Technol 70(6):6073–6084 CrossRef
144.
go back to reference Chen N, Li Y, Liu X, Zhang Z (2021) A mutual information based federated learning framework for edge computing networks. Comput Commun 176:23–30 CrossRef Chen N, Li Y, Liu X, Zhang Z (2021) A mutual information based federated learning framework for edge computing networks. Comput Commun 176:23–30 CrossRef
145.
go back to reference Zheng Z, Wu S, Huang Q, Yang J (2022) Research on localisation algorithm of large irregular workpiece for industrial robot. Int J Comput Sci Math 15(1):30–42 CrossRef Zheng Z, Wu S, Huang Q, Yang J (2022) Research on localisation algorithm of large irregular workpiece for industrial robot. Int J Comput Sci Math 15(1):30–42 CrossRef
146.
go back to reference Zhang Y, Cai X, Zhu H, Xu Y (2020) Application an improved swarming optimisation in attribute reduction. Int J Bio-Inspired Comput 16(4):213–219 CrossRef Zhang Y, Cai X, Zhu H, Xu Y (2020) Application an improved swarming optimisation in attribute reduction. Int J Bio-Inspired Comput 16(4):213–219 CrossRef
147.
go back to reference Cai X, Geng S, Wu D, Chen J (2021) Unified integration of many-objective optimization algorithm based on temporary offspring for software defects prediction. Swarm Evol Comput 63:100871 CrossRef Cai X, Geng S, Wu D, Chen J (2021) Unified integration of many-objective optimization algorithm based on temporary offspring for software defects prediction. Swarm Evol Comput 63:100871 CrossRef
148.
go back to reference Zhang Z, Xie L (2020) A many-objective integrated evolutionary algorithm for feature selection in anomaly detection. Concurrency and Computation-Practice & Experience 32(22):e5861 CrossRef Zhang Z, Xie L (2020) A many-objective integrated evolutionary algorithm for feature selection in anomaly detection. Concurrency and Computation-Practice & Experience 32(22):e5861 CrossRef
149.
go back to reference Melis M, Scalas M et al (2022) Do gradient-based explanations tell anything about adversarial robustness to android malware? Int J Mach Learn Cybernet 13(1):217–232 CrossRef Melis M, Scalas M et al (2022) Do gradient-based explanations tell anything about adversarial robustness to android malware? Int J Mach Learn Cybernet 13(1):217–232 CrossRef
150.
go back to reference Tang Z, Hu H, Xu C (2022) “A federated learning method for network intrusion detection. Concurrency and Computation: Practice and Experience 34(10):e6812 CrossRef Tang Z, Hu H, Xu C (2022) “A federated learning method for network intrusion detection. Concurrency and Computation: Practice and Experience 34(10):e6812 CrossRef
151.
go back to reference Zhao R, Yin Y, Shi Y, Xue Z (2020) Intelligent intrusion detection based on federated learning aided long short-term memory. Phys Communication 42:101157 CrossRef Zhao R, Yin Y, Shi Y, Xue Z (2020) Intelligent intrusion detection based on federated learning aided long short-term memory. Phys Communication 42:101157 CrossRef
152.
go back to reference Li B, Wu Y, Song J et al (2021) DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber-Physical Systems. IEEE Trans Industr Inf 17(8):5615–5624 CrossRef Li B, Wu Y, Song J et al (2021) DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber-Physical Systems. IEEE Trans Industr Inf 17(8):5615–5624 CrossRef
153.
go back to reference Fallahpour A, Barri K, Wong K et al (2021) An integrated data mining approach to predict electrical energy consumption. Int J Bio-Inspired Comput 17(3):142–153 CrossRef Fallahpour A, Barri K, Wong K et al (2021) An integrated data mining approach to predict electrical energy consumption. Int J Bio-Inspired Comput 17(3):142–153 CrossRef
154.
go back to reference Cai X, Cao Y et al (2021) Multi-objective evolutionary 3D face reconstruction based on improved encoder-decoder network. Inf Sci 581:233–248 CrossRef Cai X, Cao Y et al (2021) Multi-objective evolutionary 3D face reconstruction based on improved encoder-decoder network. Inf Sci 581:233–248 CrossRef
155.
go back to reference Zhang Z, Cao Y, Cui Z et al (2021) A Many-Objective Optimization Based Intelligent Intrusion Detection Algorithm for Enhancing Security of Vehicular Networks in 6G. IEEE Trans Veh Technol 70(6):5234–5243 CrossRef Zhang Z, Cao Y, Cui Z et al (2021) A Many-Objective Optimization Based Intelligent Intrusion Detection Algorithm for Enhancing Security of Vehicular Networks in 6G. IEEE Trans Veh Technol 70(6):5234–5243 CrossRef
156.
go back to reference Ko I, Chambers D, Barrett E (2021) Recurrent autonomous autoencoder for intelligent DDoS attack mitigation within the ISP domain. Int J Mach Learn Cybernet 12(11):3145–3167 CrossRef Ko I, Chambers D, Barrett E (2021) Recurrent autonomous autoencoder for intelligent DDoS attack mitigation within the ISP domain. Int J Mach Learn Cybernet 12(11):3145–3167 CrossRef
157.
go back to reference Al-Hazaimeh O, Al-Jamal M, Alomari A et al (2022) Image encryption using anti-synchronisation and Bogdanov transformation map. Int J Comput Sci Math 15(1):43–59 CrossRef Al-Hazaimeh O, Al-Jamal M, Alomari A et al (2022) Image encryption using anti-synchronisation and Bogdanov transformation map. Int J Comput Sci Math 15(1):43–59 CrossRef
158.
go back to reference Qin Z, Li G, Ye H (2021) Federated Learning and Wireless Communications. IEEE Wirel Commun 28(5):134–140 CrossRef Qin Z, Li G, Ye H (2021) Federated Learning and Wireless Communications. IEEE Wirel Commun 28(5):134–140 CrossRef
159.
go back to reference Yang M, Qian H, Wang X, Zhou Y, Zhu H (2022) Client Selection for Federated Learning With Label Noise. IEEE Trans Veh Technol 71(2):2193–2197 CrossRef Yang M, Qian H, Wang X, Zhou Y, Zhu H (2022) Client Selection for Federated Learning With Label Noise. IEEE Trans Veh Technol 71(2):2193–2197 CrossRef
160.
go back to reference Wang L, Pan Z, Wang J (2021) A Review of Reinforcement Learning Based Intelligent Optimization for Manufacturing Scheduling. Complex Syst Model Simul 1(4):257–270 CrossRef Wang L, Pan Z, Wang J (2021) A Review of Reinforcement Learning Based Intelligent Optimization for Manufacturing Scheduling. Complex Syst Model Simul 1(4):257–270 CrossRef
161.
go back to reference Wu X, Cao Z, Wu S (2021) Real-Time Hybrid Flow Shop Scheduling Approach in Smart Manufacturing Environment. Complex Syst Model Simul 1(4):335–350 CrossRef Wu X, Cao Z, Wu S (2021) Real-Time Hybrid Flow Shop Scheduling Approach in Smart Manufacturing Environment. Complex Syst Model Simul 1(4):335–350 CrossRef
162.
go back to reference Cai X, Wang P et al (2020) Weight convergence analysis of DV-hop localization algorithm with GA. Soft Comput 24(23):18249–18258 MATHCrossRef Cai X, Wang P et al (2020) Weight convergence analysis of DV-hop localization algorithm with GA. Soft Comput 24(23):18249–18258 MATHCrossRef
163.
go back to reference Peng W, Lin J, Ma X (2021) A bi-objective optimisation approach for the critical chain project scheduling problem. Int J Comput Sci Math 13(4):311–330 CrossRef Peng W, Lin J, Ma X (2021) A bi-objective optimisation approach for the critical chain project scheduling problem. Int J Comput Sci Math 13(4):311–330 CrossRef
164.
go back to reference Bai H, Fan T, Niu Y (2022) Multi-UAV Cooperative Trajectory Planning Based on Many-Objective Evolutionary Algorithm. Complex Syst Model Simul 2(2):130–141 CrossRef Bai H, Fan T, Niu Y (2022) Multi-UAV Cooperative Trajectory Planning Based on Many-Objective Evolutionary Algorithm. Complex Syst Model Simul 2(2):130–141 CrossRef
165.
go back to reference Lv D (2022) Scale parameter recognition of blurred moving image based on edge combination algorithm. Int J Comput Sci Math 15(2):168–182 CrossRef Lv D (2022) Scale parameter recognition of blurred moving image based on edge combination algorithm. Int J Comput Sci Math 15(2):168–182 CrossRef
166.
go back to reference Swain D, Bijawe S, Akolkar P et al (2021) Diabetic retinopathy using image processing and deep learning. Int J Comput Sci Math 14(4):397–409 CrossRef Swain D, Bijawe S, Akolkar P et al (2021) Diabetic retinopathy using image processing and deep learning. Int J Comput Sci Math 14(4):397–409 CrossRef
167.
go back to reference Cai X, Zhang J, Ning Z et al (2021) A Many-Objective Multistage Optimization-Based Fuzzy Decision-Making Model for Coal Production Prediction. IEEE Trans Fuzzy Syst 29(12):3665–3675 CrossRef Cai X, Zhang J, Ning Z et al (2021) A Many-Objective Multistage Optimization-Based Fuzzy Decision-Making Model for Coal Production Prediction. IEEE Trans Fuzzy Syst 29(12):3665–3675 CrossRef
168.
go back to reference Chen S, Zhang J, Bai Y et al (2021) Blockchain Enabled Intelligence of Federated Systems (BELIEFS): An attack-tolerant trustable distributed intelligence paradigm. Energy Rep 7:8900–8911 CrossRef Chen S, Zhang J, Bai Y et al (2021) Blockchain Enabled Intelligence of Federated Systems (BELIEFS): An attack-tolerant trustable distributed intelligence paradigm. Energy Rep 7:8900–8911 CrossRef
169.
go back to reference Cui Z, Zhang J et al (2020) Hybrid many-objective particle swarm optimization algorithm for green coal production problem. Inf Sci 518:256–271 CrossRef Cui Z, Zhang J et al (2020) Hybrid many-objective particle swarm optimization algorithm for green coal production problem. Inf Sci 518:256–271 CrossRef
Metadata
Title
A survey on federated learning: challenges and applications
Authors
Jie Wen
Zhixia Zhang
Yang Lan
Zhihua Cui
Jianghui Cai
Wensheng Zhang
Publication date
11-11-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 2/2023
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01647-y

Other articles of this Issue 2/2023

International Journal of Machine Learning and Cybernetics 2/2023 Go to the issue