Skip to main content
Top

2025 | OriginalPaper | Chapter

A Systematic Analysis of Diverse Large Language Models and Their Operational Paradigm

Authors : Omkar Bhattarai, Raj Chaudhary, Rahul Kumar, Ali Imam Abidi

Published in: Innovative Computing and Communications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

LLMs (Large Language Models) generated texts (e.g. Texts generated by Chat GPT) and its use has been growing rapidly where any language-related problems can be solved or any queries based on language translation can be answered easily. Some of the most well-known LLMs include OpenAI’s GPT models (GPT1, 2, 3.5, 4), Google’s BARD, BERT, Facebook’s RoBERTa and so on. Since natural language text is generated by such LLMs, it has the several possible issues associated with it. For example, our creativity will be faded away as all the ideas, codes and solutions are generated by these models. Therefore, accurate and efficient classifier tool is necessary to be formulated and implemented. Before developing a classifier tool, review of various LLMs will be done so that actual working of the large language models can be identified and used for further analysis of classifier model. LLM research has recently made tremendous strides in both academia and business industry, with ChatGPT’s introduction—a potent AI chatbot built on LLMs being a noteworthy milestone received a great deal of public interest. LLMs’ technical development has had a significant impact on AI community, which have fundamentally altered how we create and employ AI systems. Given this rapid advancement in technology, we evaluate current developments in LLMs in this survey by explaining the backdrop, major findings, and mainstream techniques. Pre-training, adaptation adjustment, use, and capacity evaluation—the four core LLM components—are the ones we focus on. We also discuss the difficulties that still need to be overcome in order to advance future advances, as well as the resources that are available for developing LLMs. For both academics and engineers, this study provides a current review of the LLM literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guo, B., Zhang, X., Wang, Z., Jiang, M., Nie, J., Ding, Y., Jianwei, Y., & Yupeng, W. (2023). How close is ChatGPT to human experts? Comparison corpus, evaluation, and detection. arXiv:2301.07597v1 [cs.CL] Guo, B., Zhang, X., Wang, Z., Jiang, M., Nie, J., Ding, Y., Jianwei, Y., & Yupeng, W. (2023). How close is ChatGPT to human experts? Comparison corpus, evaluation, and detection. arXiv:​2301.​07597v1 [cs.CL]
2.
go back to reference Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., & Wen, J. (2023). A survey of large language models. arXiv:2303.18223 [cs.CL] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., & Wen, J. (2023). A survey of large language models. arXiv:​2303.​18223 [cs.CL]
3.
go back to reference Kirchner, J. H., Ahmad, L., Aaronson, S., & Leike, J. (2023). New AI classifier for indicating AI-written text. OpenAI. Kirchner, J. H., Ahmad, L., Aaronson, S., & Leike, J. (2023). New AI classifier for indicating AI-written text. OpenAI.
4.
5.
go back to reference Liyanage, V., Buscaldi, D., & Nazarenko, A. (2022, April 29). A benchmark corpus for the detection of automatically generated text in academic publications. arXiv:2022.02013v2 [cs.CL] Liyanage, V., Buscaldi, D., & Nazarenko, A. (2022, April 29). A benchmark corpus for the detection of automatically generated text in academic publications. arXiv:2022.02013v2 [cs.CL]
6.
go back to reference Jacovi, A., Shalom, O. S., & Goldberg, Y. (2018). Understanding convolutional neural networks for text classification. arXiv preprint arXiv:1809.08037 Jacovi, A., Shalom, O. S., & Goldberg, Y. (2018). Understanding convolutional neural networks for text classification. arXiv preprint arXiv:​1809.​08037
7.
go back to reference Chen, J., Hu, Y., Liu, J., Xiao, Y., & Jiang, H. (2019). Deep short text classification with knowledge powered attention. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 6252–6259). Chen, J., Hu, Y., Liu, J., Xiao, Y., & Jiang, H. (2019). Deep short text classification with knowledge powered attention. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 6252–6259).
8.
9.
go back to reference Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., & Choi, Y. (2020, December). Defending against neural fake news. arXiv:1905.12616v3 [cs.CL] Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., & Choi, Y. (2020, December). Defending against neural fake news. arXiv:​1905.​12616v3 [cs.CL]
10.
go back to reference Kobis, N., & Mossink, L. D. (2020, December). Artificial intelligence versus Maya Angelou: Experimental evidence that people cannot differentiate AI-generated from human-written poetry. Elsevier. Kobis, N., & Mossink, L. D. (2020, December). Artificial intelligence versus Maya Angelou: Experimental evidence that people cannot differentiate AI-generated from human-written poetry. Elsevier.
11.
go back to reference Kushnareva, L., Cherniavskii, D., Mikhailov, V., Artemova, E., Barannikov, S., Bernstein, A., Piontkovskaya, I., Piontkovski, D., & Burnaev, E. (2021, September). Artificial text detection via examining the topology of attention maps. arXiv:2109.04825 Kushnareva, L., Cherniavskii, D., Mikhailov, V., Artemova, E., Barannikov, S., Bernstein, A., Piontkovskaya, I., Piontkovski, D., & Burnaev, E. (2021, September). Artificial text detection via examining the topology of attention maps. arXiv:2109.04825
12.
go back to reference Xie, Z., Brophy, J., Noack, A., You, W., Asthana, K., Perkins, C., Reis, S., Singh, S., & Lowd, D. (2022). Identifying adversarial attacks on text classifiers. arXiv:2204.03848 Xie, Z., Brophy, J., Noack, A., You, W., Asthana, K., Perkins, C., Reis, S., Singh, S., & Lowd, D. (2022). Identifying adversarial attacks on text classifiers. arXiv:​2204.​03848
13.
go back to reference Maa, Y., Jiawei, L., Yi, F., Cheng, Q., Huang, Y., Lu, W., & Liu, X. (2023, January). Is this abstract generated by AI? A research for the gap between AI-generated scientific text and human-written scientific T. Research Gate. Maa, Y., Jiawei, L., Yi, F., Cheng, Q., Huang, Y., Lu, W., & Liu, X. (2023, January). Is this abstract generated by AI? A research for the gap between AI-generated scientific text and human-written scientific T. Research Gate.
14.
go back to reference Woo, D. J., Susanto, H., Yeung, C. H., Guo, K., & Fung, A. K. Y. (2023, March). Exploring AI-generated text in student writing: How does AI help? Research Gate. Woo, D. J., Susanto, H., Yeung, C. H., Guo, K., & Fung, A. K. Y. (2023, March). Exploring AI-generated text in student writing: How does AI help? Research Gate.
15.
go back to reference Kutela, B., Msechu, K., Das, S., & Kidando, E. (2023, January 19). Chatgpt’s scientific writings: A case study on traffic safety. Available at SSRN. Kutela, B., Msechu, K., Das, S., & Kidando, E. (2023, January 19). Chatgpt’s scientific writings: A case study on traffic safety. Available at SSRN.
16.
go back to reference Sadasivan, V. S., Kumar, A., Balasubramanian, S., Wang, W., Feizi, S. (2023, March). Can AI-generated text be reliably detected? arXiv:2303.11156 [cs.CL] Sadasivan, V. S., Kumar, A., Balasubramanian, S., Wang, W., Feizi, S. (2023, March). Can AI-generated text be reliably detected? arXiv:​2303.​11156 [cs.CL]
17.
go back to reference Mitrovi, S., Andreoletti, D., & Ayoub, O. (2023). ChatGPT or human? Detect and explain. Explaining decisions of machine learning model for detecting short chat GPT-generated text. arXiv:2301.13852v1 [cs.CL] Mitrovi, S., Andreoletti, D., & Ayoub, O. (2023). ChatGPT or human? Detect and explain. Explaining decisions of machine learning model for detecting short chat GPT-generated text. arXiv:​2301.​13852v1 [cs.CL]
18.
go back to reference Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. arXiv:1706.03762 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. arXiv:​1706.​03762
19.
go back to reference Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692 Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. arXiv:​1907.​11692
20.
go back to reference Fan, L., Li, L., Ma, Z., Lee, S., Yu, H., & Hemphill, L. (2023). A bibliometric review of large language models research from 2017 to 2023. arXiv:2304.02020 Fan, L., Li, L., Ma, Z., Lee, S., Yu, H., & Hemphill, L. (2023). A bibliometric review of large language models research from 2017 to 2023. arXiv:​2304.​02020
Metadata
Title
A Systematic Analysis of Diverse Large Language Models and Their Operational Paradigm
Authors
Omkar Bhattarai
Raj Chaudhary
Rahul Kumar
Ali Imam Abidi
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_43