Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science

Authors : Mohamed Alloghani, Dhiya Al-Jumeily, Jamila Mustafina, Abir Hussain, Ahmed J. Aljaaf

Published in: Supervised and Unsupervised Learning for Data Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine learning is as growing as fast as concepts such as Big data and the field of data science in general. The purpose of the systematic review was to analyze scholarly articles that were published between 2015 and 2018 addressing or implementing supervised and unsupervised machine learning techniques in different problem-solving paradigms. Using the elements of PRISMA, the review process identified 84 scholarly articles that had been published in different journals. Of the 84 articles, 6 were published before 2015 despite their metadata indicating that they were published in 2015. The existence of the six articles in the final papers was attributed to errors in indexing. Nonetheless, from the reviewed papers, decision tree, support vector machine, and Naïve Bayes algorithms appeared to be the most cited, discussed, and implemented supervised learners. Conversely, k-means, hierarchical clustering, and principal component analysis also emerged as the commonly used unsupervised learners. The review also revealed other commonly used algorithms that include ensembles and reinforce learners, and future systematic reviews can focus on them because of the developments that machine learning and data science is undergoing at the moment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sandhu, T. H. (2018). Machine learning and natural language processing—A review. International Journal of Advanced Research in Computer Science, 9(2), 582–584.CrossRef Sandhu, T. H. (2018). Machine learning and natural language processing—A review. International Journal of Advanced Research in Computer Science, 9(2), 582–584.CrossRef
2.
go back to reference Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), 321–332.CrossRef Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), 321–332.CrossRef
3.
go back to reference Alpaydın, E. (2014). Introduction to machine learning. Cambridge, MA: MIT Press.MATH Alpaydın, E. (2014). Introduction to machine learning. Cambridge, MA: MIT Press.MATH
4.
go back to reference Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.MathSciNetMATH Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.MathSciNetMATH
5.
go back to reference MathWorks. (2016). Applying supervised learning. Machine Learning with MATLAB. MathWorks. (2016). Applying supervised learning. Machine Learning with MATLAB.
6.
go back to reference Ng, A. (2012). 1. Supervised learning. Machine Learning, 1–30. Ng, A. (2012). 1. Supervised learning. Machine Learning, 1–30.
7.
go back to reference Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42, 177–196.MATHCrossRef Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42, 177–196.MATHCrossRef
8.
go back to reference Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In Machine Learning Proceedings. Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In Machine Learning Proceedings.
9.
go back to reference Marshland, S. (2015). Machine learning: An algorithm perspective. Boca Raton, FL: CRC Press. Marshland, S. (2015). Machine learning: An algorithm perspective. Boca Raton, FL: CRC Press.
10.
go back to reference Baharudin, B., Lee, L. H., & Khan, K. (2010). A review of machine learning algorithms for text-documents classification. Journal on Advance in Information Technology, 1(1), 4–20. Baharudin, B., Lee, L. H., & Khan, K. (2010). A review of machine learning algorithms for text-documents classification. Journal on Advance in Information Technology, 1(1), 4–20.
11.
go back to reference Praveena, M. (2017). A literature review on supervised machine learning algorithms and boosting process. International Journal of Computer Applications, 169(8), 975–8887.MathSciNetCrossRef Praveena, M. (2017). A literature review on supervised machine learning algorithms and boosting process. International Journal of Computer Applications, 169(8), 975–8887.MathSciNetCrossRef
12.
go back to reference Qazi, A., Raj, R. G., Hardaker, G., & Standing, C. (2017). A systematic literature review on opinion types and sentiment analysis techniques: Tasks and challenges. Internet Research, 27(3), 608–630.CrossRef Qazi, A., Raj, R. G., Hardaker, G., & Standing, C. (2017). A systematic literature review on opinion types and sentiment analysis techniques: Tasks and challenges. Internet Research, 27(3), 608–630.CrossRef
13.
go back to reference Hutton, B., et al. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Annals of Internal Medicine, 163(7), 566–567.CrossRef Hutton, B., et al. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Annals of Internal Medicine, 163(7), 566–567.CrossRef
14.
go back to reference Zorzela, L., Loke, Y. K., Ioannidis, J. P., Golder, S., Santaguida, P., Altman, D. G., et al. (2016). PRISMA harms checklist: Improving harms reporting in systematic reviews. BMJ (Online), 352, i157. Zorzela, L., Loke, Y. K., Ioannidis, J. P., Golder, S., Santaguida, P., Altman, D. G., et al. (2016). PRISMA harms checklist: Improving harms reporting in systematic reviews. BMJ (Online), 352, i157.
15.
go back to reference Shamseer, L., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 349, g7647. Shamseer, L., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 349, g7647.
16.
go back to reference Moher, D., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1.CrossRef Moher, D., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1.CrossRef
17.
go back to reference Stroup, D. F., et al. (2000). Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 283(15), 2008–2012.CrossRef Stroup, D. F., et al. (2000). Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 283(15), 2008–2012.CrossRef
18.
go back to reference Bloch, M. H., Landeros-Weisenberger, A., Rosario, M. C., Pittenger, C., & Leckman, J. F. (2008). Meta-analysis of the symptom structure of obsessive-compulsive disorder. The American Journal of Psychiatry, 165(12), 1532–1542.CrossRef Bloch, M. H., Landeros-Weisenberger, A., Rosario, M. C., Pittenger, C., & Leckman, J. F. (2008). Meta-analysis of the symptom structure of obsessive-compulsive disorder. The American Journal of Psychiatry, 165(12), 1532–1542.CrossRef
19.
go back to reference Fujimoto, M. S., Suvorov, A., Jensen, N. O., Clement, M. J., & Bybee, S. M. (2016). Detecting false positive sequence homology: A machine learning approach. BMC Bioinformatics, 17, 101.CrossRef Fujimoto, M. S., Suvorov, A., Jensen, N. O., Clement, M. J., & Bybee, S. M. (2016). Detecting false positive sequence homology: A machine learning approach. BMC Bioinformatics, 17, 101.CrossRef
20.
go back to reference Mani, S., et al. (2013). Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. Journal of the American Medical Informatics Association, 20(4), 688–695.CrossRef Mani, S., et al. (2013). Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. Journal of the American Medical Informatics Association, 20(4), 688–695.CrossRef
21.
go back to reference Kovačević, A., Dehghan, A., Filannino, M., Keane, J. A., & Nenadic, G. (2013). Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives. Journal of the American Medical Informatics Association, 20(5), 859–866.CrossRef Kovačević, A., Dehghan, A., Filannino, M., Keane, J. A., & Nenadic, G. (2013). Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives. Journal of the American Medical Informatics Association, 20(5), 859–866.CrossRef
22.
go back to reference Klann, J. G., Anand, V., & Downs, S. M. (2013). Patient-tailored prioritization for a pediatric care decision support system through machine learning. Journal of the American Medical Informatics Association, 20(e2), e267–e274.CrossRef Klann, J. G., Anand, V., & Downs, S. M. (2013). Patient-tailored prioritization for a pediatric care decision support system through machine learning. Journal of the American Medical Informatics Association, 20(e2), e267–e274.CrossRef
23.
go back to reference Gultepe, E., Green, J. P., Nguyen, H., Adams, J., Albertson, T., & Tagkopoulos, I. (2014). From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system. Journal of the American Medical Informatics Association, 21(2), 315–325.CrossRef Gultepe, E., Green, J. P., Nguyen, H., Adams, J., Albertson, T., & Tagkopoulos, I. (2014). From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system. Journal of the American Medical Informatics Association, 21(2), 315–325.CrossRef
24.
go back to reference Mani, S., et al. (2014). Medical decision support using machine learning for early detection of late-onset neonatal sepsis. Journal of the American Medical Informatics Association, 21(2), 326–336.MathSciNetCrossRef Mani, S., et al. (2014). Medical decision support using machine learning for early detection of late-onset neonatal sepsis. Journal of the American Medical Informatics Association, 21(2), 326–336.MathSciNetCrossRef
25.
go back to reference Nguyen, D. H. M., & Patrick, J. D. (2014). Supervised machine learning and active learning in classification of radiology reports. Journal of the American Medical Informatics Association, 21(5), 893–901.CrossRef Nguyen, D. H. M., & Patrick, J. D. (2014). Supervised machine learning and active learning in classification of radiology reports. Journal of the American Medical Informatics Association, 21(5), 893–901.CrossRef
26.
go back to reference Deo, R. C. (2015). Machine learning in medicine HHS public access. Circulation, 132(20), 1920–1930.CrossRef Deo, R. C. (2015). Machine learning in medicine HHS public access. Circulation, 132(20), 1920–1930.CrossRef
27.
go back to reference Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. The Journal of Economic Perspectives, 31(2), 87–106.CrossRef Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. The Journal of Economic Perspectives, 31(2), 87–106.CrossRef
28.
go back to reference Wu, M.-J., et al. (2017). Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage, 145, 254–264.CrossRef Wu, M.-J., et al. (2017). Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage, 145, 254–264.CrossRef
29.
go back to reference Oudah, M., & Henschel, A. (2018). Taxonomy-aware feature engineering for microbiome classification. BMC Bioinformatics, 19, 227.CrossRef Oudah, M., & Henschel, A. (2018). Taxonomy-aware feature engineering for microbiome classification. BMC Bioinformatics, 19, 227.CrossRef
30.
go back to reference Palma, S. I. C. J., Traguedo, A. P., Porteira, A. R., Frias, M. J., Gamboa, H., & Roque, A. C. A. (2018). Machine learning for the meta-analyses of microbial pathogens’ volatile signatures. Scientific Reports, 8, 1–15.CrossRef Palma, S. I. C. J., Traguedo, A. P., Porteira, A. R., Frias, M. J., Gamboa, H., & Roque, A. C. A. (2018). Machine learning for the meta-analyses of microbial pathogens’ volatile signatures. Scientific Reports, 8, 1–15.CrossRef
31.
go back to reference Jaspers, S., De Troyer, E., & Aerts, M. (2018). Machine learning techniques for the automation of literature reviews and systematic reviews in EFSA. EFSA Supporting Publications, 15(6), 1427E.CrossRef Jaspers, S., De Troyer, E., & Aerts, M. (2018). Machine learning techniques for the automation of literature reviews and systematic reviews in EFSA. EFSA Supporting Publications, 15(6), 1427E.CrossRef
32.
go back to reference Crawford, M., Khoshgoftaar, T. M., Prusa, J. D., Richter, A. N., & Al Najada, H. (2015). Survey of review spam detection using machine learning techniques. Journal of Big Data, 2(1), 1–24.CrossRef Crawford, M., Khoshgoftaar, T. M., Prusa, J. D., Richter, A. N., & Al Najada, H. (2015). Survey of review spam detection using machine learning techniques. Journal of Big Data, 2(1), 1–24.CrossRef
33.
go back to reference Dinov, I. D. (2016). Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data. Gigascience, 5, 12.CrossRef Dinov, I. D. (2016). Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data. Gigascience, 5, 12.CrossRef
34.
go back to reference Dimou, A., Vahdati, S., Di Iorio, A., Lange, C., Verborgh, R., & Mannens, E. (2017). Challenges as enablers for high quality Linked Data: Insights from the Semantic Publishing Challenge. PeerJ Computer Science, 3, e105.CrossRef Dimou, A., Vahdati, S., Di Iorio, A., Lange, C., Verborgh, R., & Mannens, E. (2017). Challenges as enablers for high quality Linked Data: Insights from the Semantic Publishing Challenge. PeerJ Computer Science, 3, e105.CrossRef
35.
go back to reference Trilling, D., & Boumans, J. (2018). Automatische inhoudsanalyse van Nederlandstalige data. Tijdschrift voor Communicatiewetenschap, 46(1), 5–24. Trilling, D., & Boumans, J. (2018). Automatische inhoudsanalyse van Nederlandstalige data. Tijdschrift voor Communicatiewetenschap, 46(1), 5–24.
36.
go back to reference Van Nieuwenburg, E. P. L., Liu, Y., & Huber, S. D. (2017). Learning phase transitions by confusion. Nature Physics, 13(5), 435–439.CrossRef Van Nieuwenburg, E. P. L., Liu, Y., & Huber, S. D. (2017). Learning phase transitions by confusion. Nature Physics, 13(5), 435–439.CrossRef
37.
go back to reference Hoyt, R., Linnville, S., Thaler, S., & Moore, J. (2016). Digital family history data mining with neural networks: A pilot study. Perspectives in Health Information Management, 13, 1c. Hoyt, R., Linnville, S., Thaler, S., & Moore, J. (2016). Digital family history data mining with neural networks: A pilot study. Perspectives in Health Information Management, 13, 1c.
38.
go back to reference Dobson, J. E. (2015). Can an algorithm be disturbed? Machine learning, intrinsic criticism, and the digital humanities. College Literature, 42(4), 543–564.CrossRef Dobson, J. E. (2015). Can an algorithm be disturbed? Machine learning, intrinsic criticism, and the digital humanities. College Literature, 42(4), 543–564.CrossRef
39.
go back to reference Downing, N. S., et al. (2017). Describing the performance of U.S. hospitals by applying big data analytics. PLoS One, 12(6), e0179603.CrossRef Downing, N. S., et al. (2017). Describing the performance of U.S. hospitals by applying big data analytics. PLoS One, 12(6), e0179603.CrossRef
40.
go back to reference Hoang, X. D., & Nguyen, Q. C. (2018). Botnet detection based on machine learning techniques using DNS query data. Future Internet, 10(5), 43.CrossRef Hoang, X. D., & Nguyen, Q. C. (2018). Botnet detection based on machine learning techniques using DNS query data. Future Internet, 10(5), 43.CrossRef
41.
go back to reference Kothari, U. C., & Momayez, M. (2018). Machine learning: A novel approach to predicting slope instabilities. International Journal of Geophysics, 2018, 9.CrossRef Kothari, U. C., & Momayez, M. (2018). Machine learning: A novel approach to predicting slope instabilities. International Journal of Geophysics, 2018, 9.CrossRef
42.
go back to reference Thompson, J. A., Tan, J., & Greene, C. S. (2016). Cross-platform normalization of microarray and RNA-seq data for machine learning applications. PeerJ, 4, e1621.CrossRef Thompson, J. A., Tan, J., & Greene, C. S. (2016). Cross-platform normalization of microarray and RNA-seq data for machine learning applications. PeerJ, 4, e1621.CrossRef
43.
go back to reference Ahmed, M. U., & Mahmood, A. (2018). An empirical study of machine learning algorithms to predict students’ grades. Pakistan Journal of Science, 70(1), 91–96. Ahmed, M. U., & Mahmood, A. (2018). An empirical study of machine learning algorithms to predict students’ grades. Pakistan Journal of Science, 70(1), 91–96.
44.
go back to reference Carifio, J., Halverson, J., Krioukov, D., & Nelson, B. D. (2017). Machine learning in the string landscape. Journal of High Energy Physics, 2017(9), 1–36.MathSciNetMATHCrossRef Carifio, J., Halverson, J., Krioukov, D., & Nelson, B. D. (2017). Machine learning in the string landscape. Journal of High Energy Physics, 2017(9), 1–36.MathSciNetMATHCrossRef
45.
go back to reference Choudhari, P., & Dhari, S. V. (2017). Sentiment analysis and machine learning based sentiment classification: A review. International Journal of Advanced Research in Computer Science, 8(3). Choudhari, P., & Dhari, S. V. (2017). Sentiment analysis and machine learning based sentiment classification: A review. International Journal of Advanced Research in Computer Science, 8(3).
46.
go back to reference Lloyd, S., Garnerone, S., & Zanardi, P. (2016). Quantum algorithms for topological and geometric analysis of data. Nature Communications, 7, 10138.CrossRef Lloyd, S., Garnerone, S., & Zanardi, P. (2016). Quantum algorithms for topological and geometric analysis of data. Nature Communications, 7, 10138.CrossRef
47.
go back to reference Pavithra, D., & Jayanthi, A. N. (2018). A study on machine learning algorithm in medical diagnosis. International Journal of Advanced Research in Computer Science, 9(4), 42–46.CrossRef Pavithra, D., & Jayanthi, A. N. (2018). A study on machine learning algorithm in medical diagnosis. International Journal of Advanced Research in Computer Science, 9(4), 42–46.CrossRef
48.
go back to reference Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657–2664.CrossRef Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657–2664.CrossRef
49.
go back to reference Kaytan, M., & Aydilek, I. B. (2017). A review on machine learning tools. 2017 International Artificial Intelligence and Data Processing Symposium, 8(3), 1–4. Kaytan, M., & Aydilek, I. B. (2017). A review on machine learning tools. 2017 International Artificial Intelligence and Data Processing Symposium, 8(3), 1–4.
50.
go back to reference Lynch, C. M., van Berkel, V. H., & Frieboes, H. B. (2017). Application of unsupervised analysis techniques to lung cancer patient data. PLoS One, 12(9), e0184370.CrossRef Lynch, C. M., van Berkel, V. H., & Frieboes, H. B. (2017). Application of unsupervised analysis techniques to lung cancer patient data. PLoS One, 12(9), e0184370.CrossRef
51.
go back to reference Beck, D., Pfaendtner, J., Carothers, J., & Subramanian, V. (2017). Data science for chemical engineers. Chemical Engineering Progress, 113(2), 21–26. Beck, D., Pfaendtner, J., Carothers, J., & Subramanian, V. (2017). Data science for chemical engineers. Chemical Engineering Progress, 113(2), 21–26.
52.
go back to reference Heylman, C., Datta, R., Sobrino, A., George, S., & Gratton, E. (2015). Supervised machine learning for classification of the electrophysiological effects of chronotropic drugs on human induced pluripotent stem cell-derived cardiomyocytes. PLoS One, 10(12), e0144572.CrossRef Heylman, C., Datta, R., Sobrino, A., George, S., & Gratton, E. (2015). Supervised machine learning for classification of the electrophysiological effects of chronotropic drugs on human induced pluripotent stem cell-derived cardiomyocytes. PLoS One, 10(12), e0144572.CrossRef
53.
go back to reference Torkzaban, B., et al. (2015). Machine learning based classification of microsatellite variation: An effective approach for Phylogeographic characterization of olive populations. PLoS One, 10(11), e0143465.CrossRef Torkzaban, B., et al. (2015). Machine learning based classification of microsatellite variation: An effective approach for Phylogeographic characterization of olive populations. PLoS One, 10(11), e0143465.CrossRef
54.
go back to reference Guo, Z., Shao, X., Xu, Y., Miyazaki, H., Ohira, W., & Shibasaki, R. (2016). Identification of village building via Google earth images and supervised machine learning methods. Remote Sensing, 8(4), 271.CrossRef Guo, Z., Shao, X., Xu, Y., Miyazaki, H., Ohira, W., & Shibasaki, R. (2016). Identification of village building via Google earth images and supervised machine learning methods. Remote Sensing, 8(4), 271.CrossRef
55.
go back to reference Xia, C., Fu, L., Liu, Z., Liu, H., Chen, L., & Liu, Y. (2018). Aquatic toxic analysis by monitoring fish behavior using computer vision: A recent progress. Journal of Toxicology, 2018, 11.CrossRef Xia, C., Fu, L., Liu, Z., Liu, H., Chen, L., & Liu, Y. (2018). Aquatic toxic analysis by monitoring fish behavior using computer vision: A recent progress. Journal of Toxicology, 2018, 11.CrossRef
56.
go back to reference Fuller, D., Buote, R., & Stanley, K. (2017). A glossary for big data in population and public health: Discussion and commentary on terminology and research methods. Journal of Epidemiology and Community Health, 71(11), 1113. Fuller, D., Buote, R., & Stanley, K. (2017). A glossary for big data in population and public health: Discussion and commentary on terminology and research methods. Journal of Epidemiology and Community Health, 71(11), 1113.
57.
go back to reference Gibson, D., & de Freitas, S. (2016). Exploratory analysis in learning analytics. Technology, Knowledge and Learning, 21(1), 5–19.CrossRef Gibson, D., & de Freitas, S. (2016). Exploratory analysis in learning analytics. Technology, Knowledge and Learning, 21(1), 5–19.CrossRef
58.
go back to reference Cuperlovic-Culf, M. (2018). Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites, 8(1), 4.CrossRef Cuperlovic-Culf, M. (2018). Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites, 8(1), 4.CrossRef
59.
go back to reference Tan, M. S., Chang, S.-W., Cheah, P. L., & Yap, H. J. (2018). Integrative machine learning analysis of multiple gene expression profiles in cervical cancer. PeerJ, 6, e5285.CrossRef Tan, M. S., Chang, S.-W., Cheah, P. L., & Yap, H. J. (2018). Integrative machine learning analysis of multiple gene expression profiles in cervical cancer. PeerJ, 6, e5285.CrossRef
60.
go back to reference Meenakshi, K., Safa, M., Karthick, T., & Sivaranjani, N. (2017). A novel study of machine learning algorithms for classifying health care data. Research Journal of Pharmacy and Technology, 10(5), 1429–1432.CrossRef Meenakshi, K., Safa, M., Karthick, T., & Sivaranjani, N. (2017). A novel study of machine learning algorithms for classifying health care data. Research Journal of Pharmacy and Technology, 10(5), 1429–1432.CrossRef
61.
go back to reference Dey, A. (2016). Machine learning algorithms: A review. International Journal of Computer Science and Information Technology, 7(3), 1174–1179. Dey, A. (2016). Machine learning algorithms: A review. International Journal of Computer Science and Information Technology, 7(3), 1174–1179.
62.
go back to reference Zhao, C., Wang, S., & Li, D. (2016). Determining fuzzy membership for sentiment classification: A three-layer sentiment propagation model. PLoS One, 11(11), e0165560.CrossRef Zhao, C., Wang, S., & Li, D. (2016). Determining fuzzy membership for sentiment classification: A three-layer sentiment propagation model. PLoS One, 11(11), e0165560.CrossRef
63.
go back to reference Mossotto, E., Ashton, J. J., Coelho, T., Beattie, R. M., MacArthur, B. D., & Ennis, S. (2017). Classification of paediatric inflammatory bowel disease using machine learning. Scientific Reports, 7, 1–10.CrossRef Mossotto, E., Ashton, J. J., Coelho, T., Beattie, R. M., MacArthur, B. D., & Ennis, S. (2017). Classification of paediatric inflammatory bowel disease using machine learning. Scientific Reports, 7, 1–10.CrossRef
64.
go back to reference Lau, O., & Yohai, I. (2016). Using quantitative methods in industry. Political Science and Politics, 49(3), 524–526.CrossRef Lau, O., & Yohai, I. (2016). Using quantitative methods in industry. Political Science and Politics, 49(3), 524–526.CrossRef
65.
go back to reference Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016, 1–16.CrossRef Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016, 1–16.CrossRef
66.
go back to reference Parreco, J. P., Hidalgo, A. E., Badilla, A. D., Ilyas, O., & Rattan, R. (2018). Predicting central line-associated bloodstream infections and mortality using supervised machine learning. Journal of Critical Care, 45, 156–162.CrossRef Parreco, J. P., Hidalgo, A. E., Badilla, A. D., Ilyas, O., & Rattan, R. (2018). Predicting central line-associated bloodstream infections and mortality using supervised machine learning. Journal of Critical Care, 45, 156–162.CrossRef
67.
go back to reference Wuest, T., Irgens, C., & Thoben, K.-D. (2016). Changing states of multistage process chains. Journal of Engineering, 2016, 1.CrossRef Wuest, T., Irgens, C., & Thoben, K.-D. (2016). Changing states of multistage process chains. Journal of Engineering, 2016, 1.CrossRef
68.
go back to reference Tarwani, N. (2017). Survey of cyberbulling detection on social media big-data. International Journal of Advanced Research in Computer Science, 8(5). Tarwani, N. (2017). Survey of cyberbulling detection on social media big-data. International Journal of Advanced Research in Computer Science, 8(5).
69.
go back to reference Martinelli, E., Mencattini, A., Daprati, E., & Di Natale, C. (2016). Strength is in numbers: Can concordant artificial listeners improve prediction of emotion from speech? PLoS One, 11(8), e0161752.CrossRef Martinelli, E., Mencattini, A., Daprati, E., & Di Natale, C. (2016). Strength is in numbers: Can concordant artificial listeners improve prediction of emotion from speech? PLoS One, 11(8), e0161752.CrossRef
70.
go back to reference Liu, N., & Zhao, J. (2016). Semi-supervised online multiple kernel learning algorithm for big data. TELKOMNIKA, 14(2), 638–646.CrossRef Liu, N., & Zhao, J. (2016). Semi-supervised online multiple kernel learning algorithm for big data. TELKOMNIKA, 14(2), 638–646.CrossRef
71.
go back to reference Goh, K. L., & Singh, A. K. (2015). Comprehensive literature review on machine learning structures for Web spam classification. Procedia Computer Science, 70, 434–441.CrossRef Goh, K. L., & Singh, A. K. (2015). Comprehensive literature review on machine learning structures for Web spam classification. Procedia Computer Science, 70, 434–441.CrossRef
72.
go back to reference Mishra, C., & Gupta, D. L. (2017). Deep machine learning and neural networks: An overview. IAES International Journal of Artificial Intelligence, 6(2), 66–73.CrossRef Mishra, C., & Gupta, D. L. (2017). Deep machine learning and neural networks: An overview. IAES International Journal of Artificial Intelligence, 6(2), 66–73.CrossRef
73.
go back to reference Yan, X., Bai, Y., Fang, S., & Luo, J. (2016). A kernel-free quadratic surface support vector machine for semi-supervised learning. The Journal of the Operational Research Society, 67(7), 1001–1011.CrossRef Yan, X., Bai, Y., Fang, S., & Luo, J. (2016). A kernel-free quadratic surface support vector machine for semi-supervised learning. The Journal of the Operational Research Society, 67(7), 1001–1011.CrossRef
74.
go back to reference Yared, R., & Abdulrazak, B. (2016). Ambient technology to assist elderly people in indoor risks. Computers, 5(4), 22.CrossRef Yared, R., & Abdulrazak, B. (2016). Ambient technology to assist elderly people in indoor risks. Computers, 5(4), 22.CrossRef
75.
go back to reference Osborne, J. D., et al. (2016). Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning. Journal of the American Medical Informatics Association, 83(5), 605–623. Osborne, J. D., et al. (2016). Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning. Journal of the American Medical Informatics Association, 83(5), 605–623.
76.
go back to reference Kolog, E. A., Montero, C. S., & Tukiainen, M. (2018). Development and evaluation of an automated e-counselling system for emotion and sentiment analysis. Electronic Journal of Information Systems Evaluation, 21(1), 1–19. Kolog, E. A., Montero, C. S., & Tukiainen, M. (2018). Development and evaluation of an automated e-counselling system for emotion and sentiment analysis. Electronic Journal of Information Systems Evaluation, 21(1), 1–19.
77.
go back to reference Rafiei, M. H., Khushefati, W. H., Demirboga, R., & Adeli, H. (2017). Supervised deep restricted Boltzmann machine for estimation of concrete. ACI Materials Journal, 114(2), 237–244.CrossRef Rafiei, M. H., Khushefati, W. H., Demirboga, R., & Adeli, H. (2017). Supervised deep restricted Boltzmann machine for estimation of concrete. ACI Materials Journal, 114(2), 237–244.CrossRef
78.
go back to reference Almasre, M. A., & Al-Nuaim, H. (2017). Comparison of four SVM classifiers used with depth sensors to recognize Arabic sign language words. Computers, 6(2), 20.CrossRef Almasre, M. A., & Al-Nuaim, H. (2017). Comparison of four SVM classifiers used with depth sensors to recognize Arabic sign language words. Computers, 6(2), 20.CrossRef
79.
go back to reference Hashem, K. (2018). The rise and fall of machine learning methods in biomedical research. F1000Research, 6, 2012.CrossRef Hashem, K. (2018). The rise and fall of machine learning methods in biomedical research. F1000Research, 6, 2012.CrossRef
80.
go back to reference Torshin, I. Y., & Rudakov, K. V. (2015). On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis, 25(4), 577–587.CrossRef Torshin, I. Y., & Rudakov, K. V. (2015). On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis, 25(4), 577–587.CrossRef
81.
go back to reference Petrelli, M., & Perugini, D. (2016). Solving petrological problems through machine learning: The study case of tectonic discrimination using geochemical and isotopic data. Contributions to Mineralogy and Petrology, 171(10), 1–15.CrossRef Petrelli, M., & Perugini, D. (2016). Solving petrological problems through machine learning: The study case of tectonic discrimination using geochemical and isotopic data. Contributions to Mineralogy and Petrology, 171(10), 1–15.CrossRef
83.
go back to reference Alicante, A., Corazza, A., Isgrò, F., & Silvestri, S. (2016). Unsupervised entity and relation extraction from clinical records in Italian. Computers in Biology and Medicine, 72, 263–275.CrossRef Alicante, A., Corazza, A., Isgrò, F., & Silvestri, S. (2016). Unsupervised entity and relation extraction from clinical records in Italian. Computers in Biology and Medicine, 72, 263–275.CrossRef
84.
go back to reference Shanmugasundaram, G., & Sankarikaarguzhali, G. (2017). An investigation on IoT healthcare analytics. International Journal of Information Engineering and Electronic Business, 9(2), 11.CrossRef Shanmugasundaram, G., & Sankarikaarguzhali, G. (2017). An investigation on IoT healthcare analytics. International Journal of Information Engineering and Electronic Business, 9(2), 11.CrossRef
85.
go back to reference Huang, G., Song, S., Gupta, J. N. D., & Wu, C. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.CrossRef Huang, G., Song, S., Gupta, J. N. D., & Wu, C. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.CrossRef
86.
go back to reference Rastogi, R., & Saigal, P. (2017). Tree-based localized fuzzy twin support vector clustering with square loss function. Applied Intelligence, 47(1), 96–113.CrossRef Rastogi, R., & Saigal, P. (2017). Tree-based localized fuzzy twin support vector clustering with square loss function. Applied Intelligence, 47(1), 96–113.CrossRef
87.
go back to reference Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G., & Cannistraci, C. V. (2017). Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nature Communications, 8, 1–19.CrossRef Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G., & Cannistraci, C. V. (2017). Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nature Communications, 8, 1–19.CrossRef
88.
go back to reference Saeys, Y., Van Gassen, S., & Lambrecht, B. N. (2016). Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nature Reviews. Immunology, 16(7), 449–462.CrossRef Saeys, Y., Van Gassen, S., & Lambrecht, B. N. (2016). Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nature Reviews. Immunology, 16(7), 449–462.CrossRef
89.
go back to reference Gonzalez, A., Pierre, & Forsberg, F. (2017). Unsupervised machine learning: An investigation of clustering algorithms on a small dataset (pp. 1–39). Gonzalez, A., Pierre, & Forsberg, F. (2017). Unsupervised machine learning: An investigation of clustering algorithms on a small dataset (pp. 1–39).
90.
go back to reference Necula, S.-C. (2017). Deep learning for distribution channels’ management. Informatica Economică, 21(4), 73–85.CrossRef Necula, S.-C. (2017). Deep learning for distribution channels’ management. Informatica Economică, 21(4), 73–85.CrossRef
91.
go back to reference Munther, A., Razif, R., AbuAlhaj, M., Anbar, M., & Nizam, S. (2016). A preliminary performance evaluation of K-means, KNN and em unsupervised machine learning methods for network flow classification. International Journal of Electrical and Computer Engineering, 6(2), 778–784. Munther, A., Razif, R., AbuAlhaj, M., Anbar, M., & Nizam, S. (2016). A preliminary performance evaluation of K-means, KNN and em unsupervised machine learning methods for network flow classification. International Journal of Electrical and Computer Engineering, 6(2), 778–784.
92.
go back to reference Alalousi, A., Razif, R., Abualhaj, M., Anbar, M., & Nizam, S. (2016). A preliminary performance evaluation of K-means, KNN and EM unsupervised machine learning methods for network flow classification. International Journal of Electrical and Computer Engineering, 6(2), 778–784. Alalousi, A., Razif, R., Abualhaj, M., Anbar, M., & Nizam, S. (2016). A preliminary performance evaluation of K-means, KNN and EM unsupervised machine learning methods for network flow classification. International Journal of Electrical and Computer Engineering, 6(2), 778–784.
93.
go back to reference Alanazi, H. O., Abdullah, A. H., & Qureshi, K. N. (2017). A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. Journal of Medical Systems, 41(4), 1–10.CrossRef Alanazi, H. O., Abdullah, A. H., & Qureshi, K. N. (2017). A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. Journal of Medical Systems, 41(4), 1–10.CrossRef
94.
go back to reference Almatarneh, S., & Gamallo, P. (2018). A lexicon based method to search for extreme opinions. PLoS One, 13(5), e0197816.CrossRef Almatarneh, S., & Gamallo, P. (2018). A lexicon based method to search for extreme opinions. PLoS One, 13(5), e0197816.CrossRef
95.
go back to reference Assem, H., Xu, L., Buda, T. S., & O’sullivan, D. (2016). Machine learning as a service for enabling Internet of things and people. Personal and Ubiquitous Computing, 20(6), 899–914.CrossRef Assem, H., Xu, L., Buda, T. S., & O’sullivan, D. (2016). Machine learning as a service for enabling Internet of things and people. Personal and Ubiquitous Computing, 20(6), 899–914.CrossRef
96.
go back to reference Azim, M. A., & Bhuiyan, M. H. (2018). Text to emotion extraction using supervised machine learning techniques. TELKOMNIKA, 16(3), 1394–1401.CrossRef Azim, M. A., & Bhuiyan, M. H. (2018). Text to emotion extraction using supervised machine learning techniques. TELKOMNIKA, 16(3), 1394–1401.CrossRef
97.
go back to reference Sirbu, A. (2016). Dynamic machine learning for supervised and unsupervised classification ES. Machine Learning. Sirbu, A. (2016). Dynamic machine learning for supervised and unsupervised classification ES. Machine Learning.
98.
go back to reference Wahyudin, I., Djatna, T., & Kusuma, W. A. (2016). Cluster analysis for SME risk analysis documents based on pillar K-means. TELKOMNIKA, 14(2), 674.CrossRef Wahyudin, I., Djatna, T., & Kusuma, W. A. (2016). Cluster analysis for SME risk analysis documents based on pillar K-means. TELKOMNIKA, 14(2), 674.CrossRef
99.
go back to reference Davis, S. E., Lasko, T. A., Chen, G., Siew, E. D., & Matheny, M. E. (2018). Calibration drift in regression and machine learning models for acute kidney injury. Journal of the American Medical Informatics Association, 24, 1052–1061.CrossRef Davis, S. E., Lasko, T. A., Chen, G., Siew, E. D., & Matheny, M. E. (2018). Calibration drift in regression and machine learning models for acute kidney injury. Journal of the American Medical Informatics Association, 24, 1052–1061.CrossRef
100.
go back to reference Wallace, B. C., Noel-Storr, A., Marshall, I. J., Cohen, A. M., Smalheiser, N. R., & Thomas, J. (2017). Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach. Journal of the American Medical Informatics Association, 24(6), 1165–1168.CrossRef Wallace, B. C., Noel-Storr, A., Marshall, I. J., Cohen, A. M., Smalheiser, N. R., & Thomas, J. (2017). Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach. Journal of the American Medical Informatics Association, 24(6), 1165–1168.CrossRef
101.
go back to reference Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202.CrossRef Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202.CrossRef
102.
go back to reference Bisaso, K. R., Anguzu, G. T., Karungi, S. A., Kiragga, A., & Castelnuovo, B. (2017). A survey of machine learning applications in HIV clinical research and care. Computers in Biology and Medicine, 91, 366–371.CrossRef Bisaso, K. R., Anguzu, G. T., Karungi, S. A., Kiragga, A., & Castelnuovo, B. (2017). A survey of machine learning applications in HIV clinical research and care. Computers in Biology and Medicine, 91, 366–371.CrossRef
103.
go back to reference Bauder, R., Khoshgoftaar, T. M., & Seliya, N. (2017). A survey on the state of healthcare upcoding fraud analysis and detection. Health Services and Outcomes Research Methodology, 17(1), 31–55.CrossRef Bauder, R., Khoshgoftaar, T. M., & Seliya, N. (2017). A survey on the state of healthcare upcoding fraud analysis and detection. Health Services and Outcomes Research Methodology, 17(1), 31–55.CrossRef
104.
go back to reference Bashiri, A., Ghazisaeedi, M., Safdari, R., Shahmoradi, L., & Ehtesham, H. (2017). Improving the prediction of survival in cancer patients by using machine learning techniques: Experience of gene expression data: A narrative review. Iranian Journal of Public Health, 46(2), 165–172. Bashiri, A., Ghazisaeedi, M., Safdari, R., Shahmoradi, L., & Ehtesham, H. (2017). Improving the prediction of survival in cancer patients by using machine learning techniques: Experience of gene expression data: A narrative review. Iranian Journal of Public Health, 46(2), 165–172.
105.
go back to reference Breckels, L. M., Mulvey, C. M., Lilley, K. S., & Gatto, L. (2018). A bioconductor workflow for processing and analysing spatial proteomics data. F1000Research, 5, 2926.CrossRef Breckels, L. M., Mulvey, C. M., Lilley, K. S., & Gatto, L. (2018). A bioconductor workflow for processing and analysing spatial proteomics data. F1000Research, 5, 2926.CrossRef
106.
go back to reference Saad, S. M., et al. (2017). Pollutant recognition based on supervised machine learning for indoor air quality monitoring systems. Applied Sciences, 7(8), 823.CrossRef Saad, S. M., et al. (2017). Pollutant recognition based on supervised machine learning for indoor air quality monitoring systems. Applied Sciences, 7(8), 823.CrossRef
107.
go back to reference Fiorini, L., Cavallo, F., Dario, P., Eavis, A., & Caleb-Solly, P. (2017). Unsupervised machine learning for developing personalised behaviour models using activity data. Sensors, 17(5), 1034.CrossRef Fiorini, L., Cavallo, F., Dario, P., Eavis, A., & Caleb-Solly, P. (2017). Unsupervised machine learning for developing personalised behaviour models using activity data. Sensors, 17(5), 1034.CrossRef
108.
go back to reference Bunn, J. K., Hu, J., & Hattrick-Simpers, J. R. (2016). Semi-supervised approach to phase identification from combinatorial sample diffraction patterns. JOM, 68(8), 2116–2125.CrossRef Bunn, J. K., Hu, J., & Hattrick-Simpers, J. R. (2016). Semi-supervised approach to phase identification from combinatorial sample diffraction patterns. JOM, 68(8), 2116–2125.CrossRef
109.
go back to reference Cárdenas-López, F. A., Lamata, L., Retamal, J. C., & Solano, E. (2018). Multiqubit and multilevel quantum reinforcement learning with quantum technologies. PLoS One, 13(7), e0200455.CrossRef Cárdenas-López, F. A., Lamata, L., Retamal, J. C., & Solano, E. (2018). Multiqubit and multilevel quantum reinforcement learning with quantum technologies. PLoS One, 13(7), e0200455.CrossRef
110.
go back to reference Chen, R., Niu, W., Zhang, X., Zhuo, Z., & Lv, F. (2017). An effective conversation-based botnet detection method. Mathematical Problems in Engineering, 2017, 4934082. Chen, R., Niu, W., Zhang, X., Zhuo, Z., & Lv, F. (2017). An effective conversation-based botnet detection method. Mathematical Problems in Engineering, 2017, 4934082.
Metadata
Title
A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science
Authors
Mohamed Alloghani
Dhiya Al-Jumeily
Jamila Mustafina
Abir Hussain
Ahmed J. Aljaaf
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-22475-2_1