Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

14-02-2020 | Original Article | Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020

A technical view on neural architecture search

Journal:
International Journal of Machine Learning and Cybernetics > Issue 4/2020
Authors:
Yi-Qi Hu, Yang Yu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020 Go to the issue