Skip to main content
Top

2017 | OriginalPaper | Chapter

A Tensor Statistical Model for Quantifying Dynamic Functional Connectivity

Authors : Yingying Zhu, Xiaofeng Zhu, Minjeong Kim, Jin Yan, Guorong Wu

Published in: Information Processing in Medical Imaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Functional connectivity (FC) has been widely investigated in many imaging-based neuroscience and clinical studies. Since functional Magnetic Resonance Image (MRI) signal is just an indirect reflection of brain activity, it is difficult to accurately quantify the FC strength only based on signal correlation. To address this limitation, we propose a learning-based tensor model to derive high sensitivity and specificity connectome biomarkers at the individual level from resting-state fMRI images. First, we propose a learning-based approach to estimate the intrinsic functional connectivity. In addition to the low level region-to-region signal correlation, latent module-to-module connection is also estimated and used to provide high level heuristics for measuring connectivity strength. Furthermore, sparsity constraint is employed to automatically remove the spurious connections, thus alleviating the issue of searching for optimal threshold. Second, we integrate our learning-based approach with the sliding-window technique to further reveal the dynamics of functional connectivity. Specifically, we stack the functional connectivity matrix within each sliding window and form a 3D tensor where the third dimension denotes for time. Then we obtain dynamic functional connectivity (dFC) for each individual subject by simultaneously estimating the within-sliding-window functional connectivity and characterizing the across-sliding-window temporal dynamics. Third, in order to enhance the robustness of the connectome patterns extracted from dFC, we extend the individual-based 3D tensors to a population-based 4D tensor (with the fourth dimension stands for the training subjects) and learn the statistics of connectome patterns via 4D tensor analysis. Since our 4D tensor model jointly (1) optimizes dFC for each training subject and (2) captures the principle connectome patterns, our statistical model gains more statistical power of representing new subject than current state-of-the-art methods which in contrast perform above two steps separately. We have applied our tensor statistical model to identify ASD (Autism Spectrum Disorder) by using the learned dFC patterns. Promising classification results have been achieved demonstrating high discrimination power and great potentials in computer assisted diagnosis of neuro-disorders.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)CrossRef Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)CrossRef
2.
go back to reference Mousss, M.N., Steen, M.R., Laurienti, P.J., Hayasaka, S.: Consistency of network modules in resting-state fMRI connectome data. PLoS One 7, 44428 (2012)CrossRef Mousss, M.N., Steen, M.R., Laurienti, P.J., Hayasaka, S.: Consistency of network modules in resting-state fMRI connectome data. PLoS One 7, 44428 (2012)CrossRef
3.
go back to reference Bilello, M.: Correlating cognitive decline with white matter lesion and brain atrophy magnetic resonance imaging measurements in Alzheimer’s disease. J. Alzheimers Dis. 48(4), 987–994 (2015)CrossRef Bilello, M.: Correlating cognitive decline with white matter lesion and brain atrophy magnetic resonance imaging measurements in Alzheimer’s disease. J. Alzheimers Dis. 48(4), 987–994 (2015)CrossRef
4.
go back to reference Biswal, B.B.: Resting state fMRI: a personal history. NeuroImage 62, 938–944 (2012)CrossRef Biswal, B.B.: Resting state fMRI: a personal history. NeuroImage 62, 938–944 (2012)CrossRef
5.
go back to reference Heuvel, M., Pol, H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010)CrossRef Heuvel, M., Pol, H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010)CrossRef
6.
go back to reference Miller, D.B., O’Callaghan, J.: Biomarkers of Parkinson’s disease. Metabolism 64, 40–46 (2015)CrossRef Miller, D.B., O’Callaghan, J.: Biomarkers of Parkinson’s disease. Metabolism 64, 40–46 (2015)CrossRef
7.
go back to reference Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A.: Functional network organization of the human brain. Neuron 72, 665–678 (2011)CrossRef Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A.: Functional network organization of the human brain. Neuron 72, 665–678 (2011)CrossRef
8.
go back to reference Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)CrossRef Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)CrossRef
9.
go back to reference Zhu, Y., Zhu, X., Zhang, H., Gao, W., Shen, D., Wu, G.: Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 106–114. Springer, Cham (2016). doi:10.1007/978-3-319-46720-7_13 CrossRef Zhu, Y., Zhu, X., Zhang, H., Gao, W., Shen, D., Wu, G.: Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 106–114. Springer, Cham (2016). doi:10.​1007/​978-3-319-46720-7_​13 CrossRef
10.
go back to reference Wee, C., Yap, P., Shen, D.: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks. CNS Neurosci. Ther. 22, 212–219 (2016)CrossRef Wee, C., Yap, P., Shen, D.: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks. CNS Neurosci. Ther. 22, 212–219 (2016)CrossRef
11.
go back to reference Leonardi, N.: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. NeuroImage 83, 937–950 (2013)CrossRef Leonardi, N.: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. NeuroImage 83, 937–950 (2013)CrossRef
12.
go back to reference Heuvel, M.P., Sporns, O.: Rich-club organization of the human connectome. J. Neurosci. 31, 75–86 (2011) Heuvel, M.P., Sporns, O.: Rich-club organization of the human connectome. J. Neurosci. 31, 75–86 (2011)
13.
go back to reference Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature 10, 186–198 (2009) Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature 10, 186–198 (2009)
14.
go back to reference Zhu, Y., Huang, D., De La Torre, F., Lucey, S.: Complex non-rigid motion 3D reconstruction by union of subspaces. In: CVPR (2014) Zhu, Y., Huang, D., De La Torre, F., Lucey, S.: Complex non-rigid motion 3D reconstruction by union of subspaces. In: CVPR (2014)
15.
go back to reference Zhu, Y., Lucey, S.: 3D motion reconstruction for real-world camera motion. In: CVPR (2011) Zhu, Y., Lucey, S.: 3D motion reconstruction for real-world camera motion. In: CVPR (2011)
16.
go back to reference Wee, C., Yap, P., Zhang, D., Wang, L., Shen, D.: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct. Funct. 219, 641–656 (2014)CrossRef Wee, C., Yap, P., Zhang, D., Wang, L., Shen, D.: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct. Funct. 219, 641–656 (2014)CrossRef
17.
go back to reference Zhu, Y., Lucey, S.: Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 37, 529–540 (2015)CrossRef Zhu, Y., Lucey, S.: Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 37, 529–540 (2015)CrossRef
Metadata
Title
A Tensor Statistical Model for Quantifying Dynamic Functional Connectivity
Authors
Yingying Zhu
Xiaofeng Zhu
Minjeong Kim
Jin Yan
Guorong Wu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59050-9_32

Premium Partner