Skip to main content
Top

31-10-2024

A Theory of the NEPv Approach for Optimization on the Stiefel Manifold

Author: Ren-Cang Li

Published in: Foundations of Computational Mathematics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The NEPv approach has been increasingly used lately for optimization on the Stiefel manifold arising from machine learning. General speaking, the approach first turns the first order optimality condition into a nonlinear eigenvalue problem with eigenvector dependency (NEPv) and then solve the nonlinear problem via some variations of the self-consistent-field (SCF) iteration. The difficulty, however, lies in designing a proper SCF iteration so that a maximizer is found at the end. Currently, each use of the approach is very much individualized, especially in its convergence analysis phase to show that the approach does work or otherwise. Related, the NPDo approach is recently proposed for the sum of coupled traces and it seeks to turn the first order optimality condition into a nonlinear polar decomposition with orthogonal factor dependency (NPDo). In this paper, two unifying frameworks are established, one for each approach. Each framework is built upon a basic assumption, under which globally convergence to a stationary point is guaranteed and during the SCF iterative process that leads to the stationary point, the objective function increases monotonically. Also the notion of atomic function for each approach is proposed, and the atomic functions include commonly used matrix traces of linear and quadratic forms as special ones. It is shown that the basic assumptions of the approaches are satisfied by their respective atomic functions and, more importantly, by convex compositions of their respective atomic functions. Together they provide a large collection of objectives for which either one of approaches or both are guaranteed to work, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Throughout this paper, a polar decomposition of \(B\in {\mathbb {R}}^{n\times k}\) \((k\le n)\) refers to \(B=P\varOmega \) with \(P\in \textrm{St}(k,n)\) and positive semidefinite \(\varOmega \in {\mathbb {R}}^{k\times k}\). \(\varOmega =(B^{{{\,\textrm{T}\,}}}B)^{1/2}\) is always unique, but \(P\in \textrm{St}(k,n)\) is unique if and only if \({{\,\textrm{rank}\,}}(B)=k\) [38]. The matrix P in the decomposition is called an orthogonal polar factor of B.
 
2
By which we mean that there exist a constant \(\tau >0\) and an integer K such that \(\sigma _{\min }({\mathscr {H}}(P^{(i)}))\ge \tau \) for all \(i\ge K\).
 
Literature
1.
go back to reference P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms On Matrix Manifolds. Princeton University Press, Princeton, NJ, 2008.CrossRef P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms On Matrix Manifolds. Princeton University Press, Princeton, NJ, 2008.CrossRef
2.
go back to reference E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, 3rd edition, 1999.CrossRef E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, 3rd edition, 1999.CrossRef
3.
go back to reference Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (editors). Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (editors). Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.
4.
go back to reference Z. Bai, R.-C. Li, and D. Lu. Sharp estimation of convergence rate for self-consistent field iteration to solve eigenvector-dependent nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl., 43(1):301–327, 2022.MathSciNetCrossRef Z. Bai, R.-C. Li, and D. Lu. Sharp estimation of convergence rate for self-consistent field iteration to solve eigenvector-dependent nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl., 43(1):301–327, 2022.MathSciNetCrossRef
5.
go back to reference Z. Bai and D. Lu. Variational characterization of monotone nonlinear eigenvector problems and geometry of self-consistent-field iteration. SIAM J. Matrix Anal. Appl., 46(1):84–111, 2024.MathSciNetCrossRef Z. Bai and D. Lu. Variational characterization of monotone nonlinear eigenvector problems and geometry of self-consistent-field iteration. SIAM J. Matrix Anal. Appl., 46(1):84–111, 2024.MathSciNetCrossRef
6.
go back to reference J. Balogh, T. Csendes, and T. Rapcs’a. Some global optimization problems on Stiefel manifolds. J. Global Optim., 30:91–101, 2004.MathSciNetCrossRef J. Balogh, T. Csendes, and T. Rapcs’a. Some global optimization problems on Stiefel manifolds. J. Global Optim., 30:91–101, 2004.MathSciNetCrossRef
7.
go back to reference P. Benner and X. Liang. Convergence analysis of vector extended locally optimal block preconditioned extended conjugate gradient method for computing extreme eigenvalues. Numer. Linear Algebra Appl., 29(6):e2445, 2022. 24 pages. P. Benner and X. Liang. Convergence analysis of vector extended locally optimal block preconditioned extended conjugate gradient method for computing extreme eigenvalues. Numer. Linear Algebra Appl., 29(6):e2445, 2022. 24 pages.
8.
go back to reference R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York, 1996. R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York, 1996.
9.
go back to reference P. Birtea, I. Caşu, and D. Comănescu. First order optimality conditions and steepest descent algorithm on orthogonal Stiefel manifolds. Opt. Lett., 13:1773–1791, 2019.MathSciNetCrossRef P. Birtea, I. Caşu, and D. Comănescu. First order optimality conditions and steepest descent algorithm on orthogonal Stiefel manifolds. Opt. Lett., 13:1773–1791, 2019.MathSciNetCrossRef
10.
go back to reference M. Bolla, G. Michaletzky, G. Tusnády, and M. Ziermann. Extrema of sums of heterogeneous quadratic forms. Linear Algebra Appl., 269(1):331–365, 1998.MathSciNetCrossRef M. Bolla, G. Michaletzky, G. Tusnády, and M. Ziermann. Extrema of sums of heterogeneous quadratic forms. Linear Algebra Appl., 269(1):331–365, 1998.MathSciNetCrossRef
11.
go back to reference I. Borg and J. Lingoes. Multidimensional Similarity Structure Analysis. Springer-Verlag, New York, 1987.CrossRef I. Borg and J. Lingoes. Multidimensional Similarity Structure Analysis. Springer-Verlag, New York, 1987.CrossRef
12.
go back to reference N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learning Res., 15(42):1455–1459, 2014. N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learning Res., 15(42):1455–1459, 2014.
13.
go back to reference S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.CrossRef S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.CrossRef
14.
go back to reference Y. Cai, L.-H. Zhang, Z. Bai, and R.-C. Li. On an eigenvector-dependent nonlinear eigenvalue problem. SIAM J. Matrix Anal. Appl., 39(3):1360–1382, 2018.MathSciNetCrossRef Y. Cai, L.-H. Zhang, Z. Bai, and R.-C. Li. On an eigenvector-dependent nonlinear eigenvalue problem. SIAM J. Matrix Anal. Appl., 39(3):1360–1382, 2018.MathSciNetCrossRef
15.
go back to reference M. T. Chu and N. T. Trendafilov. The orthogonally constrained regression revisited. J. Comput. Graph. Stat., 10(4):746–771, 2001.MathSciNetCrossRef M. T. Chu and N. T. Trendafilov. The orthogonally constrained regression revisited. J. Comput. Graph. Stat., 10(4):746–771, 2001.MathSciNetCrossRef
16.
go back to reference J. P. Cunningham and Z. Ghahramani. Linear dimensionality reduction: Survey, insights, and generalizations. J. Mach. Learning Res., 16:2859–2900, 2015.MathSciNet J. P. Cunningham and Z. Ghahramani. Linear dimensionality reduction: Survey, insights, and generalizations. J. Mach. Learning Res., 16:2859–2900, 2015.MathSciNet
17.
go back to reference J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.CrossRef J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.CrossRef
18.
go back to reference A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, 1999.MathSciNetCrossRef A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, 1999.MathSciNetCrossRef
19.
20.
go back to reference K. Fan. On a theorem of Weyl concerning eigenvalues of linear transformations. I. Proc. Natl. Acad. Sci. USA, 35(11):pp. 652–655, 1949.MathSciNetCrossRef K. Fan. On a theorem of Weyl concerning eigenvalues of linear transformations. I. Proc. Natl. Acad. Sci. USA, 35(11):pp. 652–655, 1949.MathSciNetCrossRef
21.
go back to reference R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7(2):179–188, 1936.CrossRef R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7(2):179–188, 1936.CrossRef
22.
go back to reference B. Gao, X. Liu, X. Chen, and Y.-X. Yuan. A new first-order algorithmic framework for optimization problems with orthogonality constraints. SIAM J. Optim., 28(1):302–332, 2018.MathSciNetCrossRef B. Gao, X. Liu, X. Chen, and Y.-X. Yuan. A new first-order algorithmic framework for optimization problems with orthogonality constraints. SIAM J. Optim., 28(1):302–332, 2018.MathSciNetCrossRef
23.
go back to reference G. Golub and Q. Ye. An inverse free preconditioned Krylov subspace methods for symmetric eigenvalue problems. SIAM J. Sci. Comput., 24:312–334, 2002.MathSciNetCrossRef G. Golub and Q. Ye. An inverse free preconditioned Krylov subspace methods for symmetric eigenvalue problems. SIAM J. Sci. Comput., 24:312–334, 2002.MathSciNetCrossRef
24.
go back to reference G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, 4th edition, 2013.CrossRef G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, 4th edition, 2013.CrossRef
25.
go back to reference J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford University Press, New York, 2004.CrossRef J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford University Press, New York, 2004.CrossRef
26.
go back to reference N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.CrossRef N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.CrossRef
28.
go back to reference R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.CrossRef R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.CrossRef
29.
go back to reference R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York, NY, 2nd edition, 2013. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York, NY, 2nd edition, 2013.
30.
go back to reference J. R. Hurley and R. B. Cattell. The Procrustes program: producing direct rotation to test a hypothesized factor structure. Comput. Behav. Sci., 7:258–262, 1962.CrossRef J. R. Hurley and R. B. Cattell. The Procrustes program: producing direct rotation to test a hypothesized factor structure. Comput. Behav. Sci., 7:258–262, 1962.CrossRef
31.
go back to reference A. Imakura, R.-C. Li, and S.-L. Zhang. Locally optimal and heavy ball GMRES methods. Japan J. Indust. Appl. Math., 33:471–499, 2016.MathSciNetCrossRef A. Imakura, R.-C. Li, and S.-L. Zhang. Locally optimal and heavy ball GMRES methods. Japan J. Indust. Appl. Math., 33:471–499, 2016.MathSciNetCrossRef
32.
go back to reference C. Kanzow and H.-D. Qi. A QP-free constrained Newton-type method for variational inequality problems. Math. Program., 85:81–106, 1999.MathSciNetCrossRef C. Kanzow and H.-D. Qi. A QP-free constrained Newton-type method for variational inequality problems. Math. Program., 85:81–106, 1999.MathSciNetCrossRef
33.
go back to reference A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput., 23(2):517–541, 2001.MathSciNetCrossRef A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput., 23(2):517–541, 2001.MathSciNetCrossRef
34.
go back to reference W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, 1965.MathSciNetCrossRef W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, 1965.MathSciNetCrossRef
35.
go back to reference J. Kovač-Striko and K. Veselić. Some remarks on the spectra of Hermitian matrices. Linear Algebra Appl., 145:221–229, 1991.MathSciNetCrossRef J. Kovač-Striko and K. Veselić. Some remarks on the spectra of Hermitian matrices. Linear Algebra Appl., 145:221–229, 1991.MathSciNetCrossRef
36.
go back to reference R. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK User’s Guide. SIAM, Philadelphia, 1998.CrossRef R. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK User’s Guide. SIAM, Philadelphia, 1998.CrossRef
38.
39.
40.
go back to reference R.-C. Li. Matrix perturbation theory. In L. Hogben, R. Brualdi, and G. W. Stewart, editors, Handbook of Linear Algebra, page Chapter 21. CRC Press, Boca Raton, FL, 2nd edition, 2014. R.-C. Li. Matrix perturbation theory. In L. Hogben, R. Brualdi, and G. W. Stewart, editors, Handbook of Linear Algebra, page Chapter 21. CRC Press, Boca Raton, FL, 2nd edition, 2014.
41.
go back to reference R.-C. Li. Rayleigh quotient based optimization methods for eigenvalue problems. In Z. Bai, Weiguo Gao, and Yangfeng Su, editors, Matrix Functions and Matrix Equations, volume 19 of Series in Contemporary Applied Mathematics, pages 76–108. World Scientific, Singapore, 2015. R.-C. Li. Rayleigh quotient based optimization methods for eigenvalue problems. In Z. Bai, Weiguo Gao, and Yangfeng Su, editors, Matrix Functions and Matrix Equations, volume 19 of Series in Contemporary Applied Mathematics, pages 76–108. World Scientific, Singapore, 2015.
42.
go back to reference R.-C. Li. A theory of the NEPv approach for optimization on the Stiefel manifold, 2023. arXiv:2305.00091, revised April 2024 and July 2024. R.-C. Li. A theory of the NEPv approach for optimization on the Stiefel manifold, 2023. arXiv:​2305.​00091, revised April 2024 and July 2024.
43.
go back to reference X. Liang and R.-C. Li. On generalizing trace minimization principles, II. Linear Algebra Appl., 687:8–37, 2024.MathSciNetCrossRef X. Liang and R.-C. Li. On generalizing trace minimization principles, II. Linear Algebra Appl., 687:8–37, 2024.MathSciNetCrossRef
44.
go back to reference X. Liang, R.-C. Li, and Z. Bai. Trace minimization principles for positive semi-definite pencils. Linear Algebra Appl., 438:3085–3106, 2013.MathSciNetCrossRef X. Liang, R.-C. Li, and Z. Bai. Trace minimization principles for positive semi-definite pencils. Linear Algebra Appl., 438:3085–3106, 2013.MathSciNetCrossRef
45.
go back to reference X. Liang, L. Wang, L.-H. Zhang, and R.-C. Li. On generalizing trace minimization principles. Linear Algebra Appl., 656:483–509, 2023.MathSciNetCrossRef X. Liang, L. Wang, L.-H. Zhang, and R.-C. Li. On generalizing trace minimization principles. Linear Algebra Appl., 656:483–509, 2023.MathSciNetCrossRef
46.
go back to reference X.-G. Liu, X.-F. Wang, and W.-G. Wang. Maximization of matrix trace function of product Stiefel manifolds. SIAM J. Matrix Anal. Appl., 36(4):1489–1506, 2015.MathSciNetCrossRef X.-G. Liu, X.-F. Wang, and W.-G. Wang. Maximization of matrix trace function of product Stiefel manifolds. SIAM J. Matrix Anal. Appl., 36(4):1489–1506, 2015.MathSciNetCrossRef
47.
go back to reference D. Lu and R.-C. Li. Locally unitarily invariantizable NEPv and convergence analysis of SCF. Math. Comp., 93(349):2291–2329, 2024. Published electronically: January 9, 2024. D. Lu and R.-C. Li. Locally unitarily invariantizable NEPv and convergence analysis of SCF. Math. Comp., 93(349):2291–2329, 2024. Published electronically: January 9, 2024.
48.
go back to reference J. Moré and D. Sorensen. Computing a trust region step. SIAM J. Sci. Statist. Comput., 4(3):553–572, 1983.MathSciNetCrossRef J. Moré and D. Sorensen. Computing a trust region step. SIAM J. Sci. Statist. Comput., 4(3):553–572, 1983.MathSciNetCrossRef
49.
go back to reference T. Ngo, M. Bellalij, and Y. Saad. The trace ratio optimization problem for dimensionality reduction. SIAM J. Matrix Anal. Appl., 31(5):2950–2971, 2010.MathSciNetCrossRef T. Ngo, M. Bellalij, and Y. Saad. The trace ratio optimization problem for dimensionality reduction. SIAM J. Matrix Anal. Appl., 31(5):2950–2971, 2010.MathSciNetCrossRef
50.
go back to reference F. Nie, R. Zhang, and X. Li. A generalized power iteration method for solving quadratic problem on the Stiefel manifold. SCIENCE CHINA Info. Sci., 60(11):1–10, 2017.MathSciNet F. Nie, R. Zhang, and X. Li. A generalized power iteration method for solving quadratic problem on the Stiefel manifold. SCIENCE CHINA Info. Sci., 60(11):1–10, 2017.MathSciNet
51.
go back to reference J. Nocedal and S. Wright. Numerical Optimization. Springer, 2nd edition, 2006. J. Nocedal and S. Wright. Numerical Optimization. Springer, 2nd edition, 2006.
52.
go back to reference B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998. This SIAM edition is an unabridged, corrected reproduction of the work first published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980. B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998. This SIAM edition is an unabridged, corrected reproduction of the work first published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.
53.
go back to reference B. T. Polyak. Introduction to Optimization. Optimization Software, New York, 1987. B. T. Polyak. Introduction to Optimization. Optimization Software, New York, 1987.
54.
go back to reference P. Quillen and Q. Ye. A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. J. Comput. Appl. Math., 233(5):1298–1313, 2010.MathSciNetCrossRef P. Quillen and Q. Ye. A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. J. Comput. Appl. Math., 233(5):1298–1313, 2010.MathSciNetCrossRef
56.
go back to reference J. D. Rutter. A serial implementation of Cuppen’s divide and conquer algorithm for the symmetric eigenvalue problem. Technical Report UCB/CSD-94-799, EECS Department, University of California, Berkeley, February 1994. J. D. Rutter. A serial implementation of Cuppen’s divide and conquer algorithm for the symmetric eigenvalue problem. Technical Report UCB/CSD-94-799, EECS Department, University of California, Berkeley, February 1994.
57.
go back to reference Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester, UK, 1992. Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester, UK, 1992.
58.
go back to reference Y. Saad, J. R. Chelikowsky, and S. M. Shontz. Numerical methods for electronic structure calculations of materials. SIAM Rev., 52(1):3–54, 2010.MathSciNetCrossRef Y. Saad, J. R. Chelikowsky, and S. M. Shontz. Numerical methods for electronic structure calculations of materials. SIAM Rev., 52(1):3–54, 2010.MathSciNetCrossRef
59.
go back to reference G. W. Stewart and J. G. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990. G. W. Stewart and J. G. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.
60.
go back to reference J. G. Sun. Matrix Perturbation Analysis. Graduate Texts (Academia, Sinica). Science Publisher, Beijing, 2nd edition, November 2001. in Chinese. J. G. Sun. Matrix Perturbation Analysis. Graduate Texts (Academia, Sinica). Science Publisher, Beijing, 2nd edition, November 2001. in Chinese.
61.
go back to reference I. Takahashi. A note on the conjugate gradient method. Inform. Process. Japan, 5:45–49, 1965.MathSciNet I. Takahashi. A note on the conjugate gradient method. Inform. Process. Japan, 5:45–49, 1965.MathSciNet
62.
go back to reference J. M. F. Ten Berge. Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations. Psychometrika, 53(4):487–494, 1984.CrossRef J. M. F. Ten Berge. Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations. Psychometrika, 53(4):487–494, 1984.CrossRef
63.
go back to reference Z. Teng and R.-C. Li. Variations of orthonormal basis matrices of subspaces. Numer. Alg., Contr. Optim., 2024. to appear. Z. Teng and R.-C. Li. Variations of orthonormal basis matrices of subspaces. Numer. Alg., Contr. Optim., 2024. to appear.
64.
go back to reference J. P. Van de Geer. Linear relations among \(k\) sets of variables. Psychometrika, 49(1):70–94, 1984. J. P. Van de Geer. Linear relations among \(k\) sets of variables. Psychometrika, 49(1):70–94, 1984.
65.
go back to reference J. von Neumann. Some matrix-inequalities and metrization of matrix-space. Tomck. Univ. Rev., 1:286–300, 1937. J. von Neumann. Some matrix-inequalities and metrization of matrix-space. Tomck. Univ. Rev., 1:286–300, 1937.
66.
go back to reference L. Wang, B. Gao, and X. Liu. Multipliers correction methods for optimization problems over the Stiefel manifold. CSIAM Trans. Appl. Math., 2(3):508–531, 2021.MathSciNetCrossRef L. Wang, B. Gao, and X. Liu. Multipliers correction methods for optimization problems over the Stiefel manifold. CSIAM Trans. Appl. Math., 2(3):508–531, 2021.MathSciNetCrossRef
69.
go back to reference H. F. Weinberger. Variational Methods for Eigenvalue Approximation, volume 15 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1974. H. F. Weinberger. Variational Methods for Eigenvalue Approximation, volume 15 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1974.
70.
go back to reference Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Math. Program., 142(1-2):397–434, 2013.MathSciNetCrossRef Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Math. Program., 142(1-2):397–434, 2013.MathSciNetCrossRef
71.
go back to reference C. Yang, J. C. Meza, B. Lee, and L.-W. Wang. KSSOLV—a MATLAB toolbox for solving the Kohn-Sham equations. ACM Trans. Math. Software, 36(2):1–35, 2009.MathSciNetCrossRef C. Yang, J. C. Meza, B. Lee, and L.-W. Wang. KSSOLV—a MATLAB toolbox for solving the Kohn-Sham equations. ACM Trans. Math. Software, 36(2):1–35, 2009.MathSciNetCrossRef
72.
go back to reference M. Yang and R.-C. Li. Heavy ball flexible GMRES method for nonsymmetric linear systems. J. Comp. Math., 40(5):715–731, 2021.MathSciNet M. Yang and R.-C. Li. Heavy ball flexible GMRES method for nonsymmetric linear systems. J. Comp. Math., 40(5):715–731, 2021.MathSciNet
73.
go back to reference L.-H. Zhang, L.-Z. Liao, and M. K. Ng. Fast algorithms for the generalized Foley-Sammon discriminant analysis. SIAM J. Matrix Anal. Appl., 31(4):1584–1605, 2010.MathSciNetCrossRef L.-H. Zhang, L.-Z. Liao, and M. K. Ng. Fast algorithms for the generalized Foley-Sammon discriminant analysis. SIAM J. Matrix Anal. Appl., 31(4):1584–1605, 2010.MathSciNetCrossRef
74.
go back to reference L.-H. Zhang, L.-Z. Liao, and M. K. Ng. Superlinear convergence of a general algorithm for the generalized Foley-Sammon discriminant analysis. J. Optim. Theory Appl., 157(3):853–865, 2013.MathSciNetCrossRef L.-H. Zhang, L.-Z. Liao, and M. K. Ng. Superlinear convergence of a general algorithm for the generalized Foley-Sammon discriminant analysis. J. Optim. Theory Appl., 157(3):853–865, 2013.MathSciNetCrossRef
75.
go back to reference L.-H. Zhang, W. H. Yang, C. Shen, and J. Ying. An eigenvalue-based method for the unbalanced Procrustes problem. SIAM J. Matrix Anal. Appl., 41(3):957–983, 2020.MathSciNetCrossRef L.-H. Zhang, W. H. Yang, C. Shen, and J. Ying. An eigenvalue-based method for the unbalanced Procrustes problem. SIAM J. Matrix Anal. Appl., 41(3):957–983, 2020.MathSciNetCrossRef
76.
go back to reference L.-H. Zhang and R.-C. Li. Maximization of the sum of the trace ratio on the Stiefel manifold, I: Theory. SCIENCE CHINA Math., 57(12):2495–2508, 2014.MathSciNetCrossRef L.-H. Zhang and R.-C. Li. Maximization of the sum of the trace ratio on the Stiefel manifold, I: Theory. SCIENCE CHINA Math., 57(12):2495–2508, 2014.MathSciNetCrossRef
77.
go back to reference L.-H. Zhang and R.-C. Li. Maximization of the sum of the trace ratio on the Stiefel manifold, II: Computation. SCIENCE CHINA Math., 58(7):1549–1566, 2015.MathSciNetCrossRef L.-H. Zhang and R.-C. Li. Maximization of the sum of the trace ratio on the Stiefel manifold, II: Computation. SCIENCE CHINA Math., 58(7):1549–1566, 2015.MathSciNetCrossRef
78.
go back to reference L.-H. Zhang, L. Wang, Z. Bai, and R.-C. Li. A self-consistent-field iteration for orthogonal canonical correlation analysis. IEEE Trans. Pattern Anal. Mach. Intell., 44(2):890–904, 2022.CrossRef L.-H. Zhang, L. Wang, Z. Bai, and R.-C. Li. A self-consistent-field iteration for orthogonal canonical correlation analysis. IEEE Trans. Pattern Anal. Mach. Intell., 44(2):890–904, 2022.CrossRef
79.
go back to reference Z. Zhang and K. Du. Successive projection method for solving the unbalanced Procrustes problem. SCIENCE CHINA Math., 49(7):971–986, 2006.MathSciNetCrossRef Z. Zhang and K. Du. Successive projection method for solving the unbalanced Procrustes problem. SCIENCE CHINA Math., 49(7):971–986, 2006.MathSciNetCrossRef
80.
go back to reference Z. Zhang, Z. Zhai, and L. Li. Uniform projection for multi-view learning. IEEE Trans. Pattern Anal. Mach. Intell., 39(8):1675–1689, 2017.CrossRef Z. Zhang, Z. Zhai, and L. Li. Uniform projection for multi-view learning. IEEE Trans. Pattern Anal. Mach. Intell., 39(8):1675–1689, 2017.CrossRef
81.
go back to reference H. Zhao, Z. Wang, and F. Nie. Orthogonal least squares regression for feature extraction. Neurocomputing, 216:200–207, 2016.CrossRef H. Zhao, Z. Wang, and F. Nie. Orthogonal least squares regression for feature extraction. Neurocomputing, 216:200–207, 2016.CrossRef
82.
go back to reference Y. Zhou and R.-C. Li. Bounding the spectrum of large Hermitian matrices. Linear Algebra Appl., 435:480–493, 2011.MathSciNetCrossRef Y. Zhou and R.-C. Li. Bounding the spectrum of large Hermitian matrices. Linear Algebra Appl., 435:480–493, 2011.MathSciNetCrossRef
Metadata
Title
A Theory of the NEPv Approach for Optimization on the Stiefel Manifold
Author
Ren-Cang Li
Publication date
31-10-2024
Publisher
Springer US
Published in
Foundations of Computational Mathematics
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-024-09687-2

Premium Partner