Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2017 | Supplement | Chapter

A Tongue Image Segmentation Method Based on Enhanced HSV Convolutional Neural Network

Authors : Jiang Li, Baochuan Xu, Xiaojuan Ban, Ping Tai, Boyuan Ma

Published in: Cooperative Design, Visualization, and Engineering

Publisher: Springer International Publishing

share
SHARE

Abstract

In the procedure of the Chinese medical tongue diagnosis, it’s necessary to carry out the original tongue image segmentation to reduce interference to the tongue feature extraction caused by the non-tongue part of the face. In this paper, we propose a new method based on enhanced HSV color model convolutional neural network for tongue image segmentation. This method can get a better in tongue image segmentation results compared with others. This method also has a great advantage over other methods in the processing speed.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Yuan, L., Liw, E., Yao, J., et al.: Research progress of information processing technology on tongue diagnosis of traditional Chinese medicine. Acta Univ. Tradit. Med. Sin. Pharmacol. Shanghai 25(02), 80–86 (2011) Yuan, L., Liw, E., Yao, J., et al.: Research progress of information processing technology on tongue diagnosis of traditional Chinese medicine. Acta Univ. Tradit. Med. Sin. Pharmacol. Shanghai 25(02), 80–86 (2011)
2.
go back to reference Guo, R., Wang, Y.-Q., Yan, J.-J., et al.: Study on the objectivity of traditional Chinese medicinal tongue inspection. Chin. J. Integr. Tradit. West. Med. 29(07), 642–645 (2009) Guo, R., Wang, Y.-Q., Yan, J.-J., et al.: Study on the objectivity of traditional Chinese medicinal tongue inspection. Chin. J. Integr. Tradit. West. Med. 29(07), 642–645 (2009)
3.
go back to reference Chiu, C.-C.: A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue. Comput. Methods Programs Biomed. 61(2), 77–89 (2000) CrossRef Chiu, C.-C.: A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue. Comput. Methods Programs Biomed. 61(2), 77–89 (2000) CrossRef
4.
go back to reference Sun, X., Pang, C.: An improved snake model method on tongue segmentation. J. Chang. Univ. Sci. Technol. 36(5), 154–156 (2013) Sun, X., Pang, C.: An improved snake model method on tongue segmentation. J. Chang. Univ. Sci. Technol. 36(5), 154–156 (2013)
5.
go back to reference Wang, K., Guo, Q., Zhuang, D.: An image segmentation method based on the improved snake model. In: IEEE International Conference on Mechatronics and Automation, pp. 532–536 (2006) Wang, K., Guo, Q., Zhuang, D.: An image segmentation method based on the improved snake model. In: IEEE International Conference on Mechatronics and Automation, pp. 532–536 (2006)
7.
go back to reference Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988) CrossRefMATH Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988) CrossRefMATH
8.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, no. 2 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, no. 2 (2012)
9.
go back to reference Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Computer Vision and Pattern Recognition, pp. 1891–1898. IEEE (2014) Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Computer Vision and Pattern Recognition, pp. 1891–1898. IEEE (2014)
10.
go back to reference Zuiderveld, K.: Contrast Limited Adaptive Histogram Equalization. Graphics Gems, pp. 474–485. Academic Press, San Diego (1994) Zuiderveld, K.: Contrast Limited Adaptive Histogram Equalization. Graphics Gems, pp. 474–485. Academic Press, San Diego (1994)
11.
go back to reference Zhang, L.: Contrast limited adaptive histogram equalization. Comput. Knowl. Technol. (2010) Zhang, L.: Contrast limited adaptive histogram equalization. Comput. Knowl. Technol. (2010)
12.
go back to reference Lecun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time Series. The Handbook of Brain Theory and Neural. MIT Press, Cambridge (1997) Lecun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time Series. The Handbook of Brain Theory and Neural. MIT Press, Cambridge (1997)
14.
go back to reference Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics (2011) Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics (2011)
15.
go back to reference Hinton, G.E., Srivastava, N., Krizhevsky, A., et al.: Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012) Hinton, G.E., Srivastava, N., Krizhevsky, A., et al.: Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012)
Metadata
Title
A Tongue Image Segmentation Method Based on Enhanced HSV Convolutional Neural Network
Authors
Jiang Li
Baochuan Xu
Xiaojuan Ban
Ping Tai
Boyuan Ma
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-66805-5_32