Skip to main content
Top
Published in: Archive of Applied Mechanics 1/2022

15-10-2021 | Original

A topology optimization method and experimental verification of piezoelectric stick–slip actuator with flexure hinge mechanism

Authors: Shitong Yang, Yuelong Li, Xiao Xia, Peng Ning, Wentao Ruan, Ruifang Zheng, Xiaohui Lu

Published in: Archive of Applied Mechanics | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a topology optimization method to design the piezoelectric stick–slip actuator. In particular, the vertical input displacement can be converted to the oblique displacement by the flexure hinge driving mechanism, and the large-stroke motion is realized. Based on the solid isotropic material with penalization (SIMP) model and combined with the motion characteristics of the stick–slip actuator, in order to obtain a larger output displacement and limit the parasitic displacement, the ratio of output displacement to input displacement is maximized as the objective function, and the relationship between parasitic displacement and output displacement is considered as a constraint condition. The method of moving asymptotes (MMA) is used to solve the optimization problem, and the driving mechanism structure is designed by the topology optimization result. The feasibility and reliability of the driving mechanism are verified by finite element analysis (FEA), then the prototype is fabricated. Experimental test results indicate that the velocity of the actuator reaches 15.25 mm/s under the locking force of 1 N and frequency of 650 Hz, and the resolution of 96 nm is achieved. This work shows that the topology optimization method can be used to improve the performance of the actuator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang, H., Zhao, H.W., Fan, Z.Q., Zhang, H., Ma, Z.C., Yang, Z.J.: Analysis and experiments of a novel and compact 3-DOF precision positioning platform. J. Mech. Sci. Technol. 27(11), 3347–3356 (2013)CrossRef Huang, H., Zhao, H.W., Fan, Z.Q., Zhang, H., Ma, Z.C., Yang, Z.J.: Analysis and experiments of a novel and compact 3-DOF precision positioning platform. J. Mech. Sci. Technol. 27(11), 3347–3356 (2013)CrossRef
2.
go back to reference Hunstig, M.: Piezoelectric inertia motors: a critical review of history, concepts, design, applications, and perspectives. Actuators 6(1), 7 (2017)CrossRef Hunstig, M.: Piezoelectric inertia motors: a critical review of history, concepts, design, applications, and perspectives. Actuators 6(1), 7 (2017)CrossRef
3.
go back to reference Kang, D., Lee, M.G., Gweon, D.: Development of compact high precision linear piezoelectric stepping positioner with nanometer accuracy and large travel range. Rev. Sci. Instrum. 78(7), 075112 (2007)CrossRef Kang, D., Lee, M.G., Gweon, D.: Development of compact high precision linear piezoelectric stepping positioner with nanometer accuracy and large travel range. Rev. Sci. Instrum. 78(7), 075112 (2007)CrossRef
4.
go back to reference Wang, S.P., Rong, W.B., Wang, L.F., Pei, Z.C., Sun, L.N.: Design, analysis and experimental performance of a novel stick-slip type piezoelectric rotary actuator based on variable force couple driving. Smart Mater. Struct. 26(5), 055005 (2017)CrossRef Wang, S.P., Rong, W.B., Wang, L.F., Pei, Z.C., Sun, L.N.: Design, analysis and experimental performance of a novel stick-slip type piezoelectric rotary actuator based on variable force couple driving. Smart Mater. Struct. 26(5), 055005 (2017)CrossRef
5.
go back to reference Bhowmick, S., Hintsala, E., Stauffer, D., Syed Asif, S.A.: In-situ SEM and TEM nanomechanical study of wear and failure mechanisms. Microsc. Microanal. 24(S1), 1934–1935 (2018)CrossRef Bhowmick, S., Hintsala, E., Stauffer, D., Syed Asif, S.A.: In-situ SEM and TEM nanomechanical study of wear and failure mechanisms. Microsc. Microanal. 24(S1), 1934–1935 (2018)CrossRef
6.
go back to reference Breguet, J. M., Driesen, W., Kaegi, F., Cimprich, T.: Applications of piezo-actuated micro-robots in micro-biology and material science. In: IEEE International Conference on Mechatronics and Automation, pp. 57–62. IEEE (2007) Breguet, J. M., Driesen, W., Kaegi, F., Cimprich, T.: Applications of piezo-actuated micro-robots in micro-biology and material science. In: IEEE International Conference on Mechatronics and Automation, pp. 57–62. IEEE (2007)
7.
go back to reference Liu, Y.X., Wang, L., Gu, Z.Z., Quan, Q.Q., Deng, J.: Development of a two-dimensional linear piezoelectric stepping platform using longitudinal-bending hybrid actuators. IEEE Trans. Ind. Electron. 66(4), 3030–3040 (2019)CrossRef Liu, Y.X., Wang, L., Gu, Z.Z., Quan, Q.Q., Deng, J.: Development of a two-dimensional linear piezoelectric stepping platform using longitudinal-bending hybrid actuators. IEEE Trans. Ind. Electron. 66(4), 3030–3040 (2019)CrossRef
8.
go back to reference Tian, Y., Zhang, D., Shirinzadeh, B.: Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis. Eng. 35(4), 554–565 (2001)CrossRef Tian, Y., Zhang, D., Shirinzadeh, B.: Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis. Eng. 35(4), 554–565 (2001)CrossRef
9.
go back to reference Cherepanov, V., Coenen, P., Voigtländer, B.: A nano-positioner for scanning probe microscopy: the KoalaDrive. Rev. Sci. Instrum. 83(2), 023703 (2012)CrossRef Cherepanov, V., Coenen, P., Voigtländer, B.: A nano-positioner for scanning probe microscopy: the KoalaDrive. Rev. Sci. Instrum. 83(2), 023703 (2012)CrossRef
10.
go back to reference Kratochvil, B.E., Dong, L.X., Nelson, B.J.: Real time rigid-body visual tracking in a scanning electron microscope. Int. J. Robot. Res. 28(4), 498–511 (2009)CrossRef Kratochvil, B.E., Dong, L.X., Nelson, B.J.: Real time rigid-body visual tracking in a scanning electron microscope. Int. J. Robot. Res. 28(4), 498–511 (2009)CrossRef
11.
go back to reference Claeyssen, F., Letty, R.L., Barillot, F., Sosnicki, O.: Amplified piezoelectric actuators: static and dynamic applications. Ferroelectrics 351(1), 3–14 (2007)CrossRef Claeyssen, F., Letty, R.L., Barillot, F., Sosnicki, O.: Amplified piezoelectric actuators: static and dynamic applications. Ferroelectrics 351(1), 3–14 (2007)CrossRef
12.
go back to reference Liu, Y.T., Higuchi, T., Fung, R.F.: A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator—part II: theoretical analysis. Precis. Eng. 27(1), 22–31 (2003)CrossRef Liu, Y.T., Higuchi, T., Fung, R.F.: A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator—part II: theoretical analysis. Precis. Eng. 27(1), 22–31 (2003)CrossRef
13.
go back to reference Mohith, S., Upadhya, A.R., Navin, K.P., Kulkarni, S.M., Rao, M.: Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Mater. Struct. 30(1), 013002 (2021)CrossRef Mohith, S., Upadhya, A.R., Navin, K.P., Kulkarni, S.M., Rao, M.: Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Mater. Struct. 30(1), 013002 (2021)CrossRef
14.
go back to reference Wang, L., Chen, W.S., Liu, J.K., Deng, J., Liu, Y.X.: A review of recent studies on non-resonant piezoelectric actuators. Mech. Syst. Signal Process. 133, 106254 (2019)CrossRef Wang, L., Chen, W.S., Liu, J.K., Deng, J., Liu, Y.X.: A review of recent studies on non-resonant piezoelectric actuators. Mech. Syst. Signal Process. 133, 106254 (2019)CrossRef
15.
go back to reference Hunstig, M., Hemsel, T., Sextro, W.: Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: ideal excitation. Sens. Actuator A Phys. 200, 90–100 (2013)CrossRef Hunstig, M., Hemsel, T., Sextro, W.: Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: ideal excitation. Sens. Actuator A Phys. 200, 90–100 (2013)CrossRef
16.
go back to reference Li, J.P., Huang, H., Morita, T.: Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sens. Actuator A Phys. 292, 39–51 (2019)CrossRef Li, J.P., Huang, H., Morita, T.: Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sens. Actuator A Phys. 292, 39–51 (2019)CrossRef
17.
go back to reference Wang, L., Chen, D., Cheng, T.H., He, P., Lu, X.H., Zhao, H.W.: A friction regulation hybrid driving method for backward motion restraint of the smooth impact drive mechanism. Smart Mater. Struct. 25(8), 085033 (2017)CrossRef Wang, L., Chen, D., Cheng, T.H., He, P., Lu, X.H., Zhao, H.W.: A friction regulation hybrid driving method for backward motion restraint of the smooth impact drive mechanism. Smart Mater. Struct. 25(8), 085033 (2017)CrossRef
18.
go back to reference Iqbal, S., Malik, A.: A review on MEMS based micro displacement amplification mechanisms. Sens. Actuator A Phys. 300, 111666 (2019)CrossRef Iqbal, S., Malik, A.: A review on MEMS based micro displacement amplification mechanisms. Sens. Actuator A Phys. 300, 111666 (2019)CrossRef
19.
go back to reference Kim, J.H., Kim, S.H., Kwak, Y.K.: Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism. Rev. Sci. Instrum. 74(5), 32918–32924 (2003)CrossRef Kim, J.H., Kim, S.H., Kwak, Y.K.: Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism. Rev. Sci. Instrum. 74(5), 32918–32924 (2003)CrossRef
20.
go back to reference Lee, H.J., Kim, H.C., Kim, H.Y., Gweon, D.G.: Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier. Rev. Sci. Instrum. 84(11), 115103 (2013)CrossRef Lee, H.J., Kim, H.C., Kim, H.Y., Gweon, D.G.: Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier. Rev. Sci. Instrum. 84(11), 115103 (2013)CrossRef
21.
go back to reference Ling, M.X., Cao, J.Y., Zeng, M.H., Lin, J., Inman, D.J.: Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms. Smart Mater. Struct. 25(7), 075022 (2016)CrossRef Ling, M.X., Cao, J.Y., Zeng, M.H., Lin, J., Inman, D.J.: Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms. Smart Mater. Struct. 25(7), 075022 (2016)CrossRef
22.
go back to reference Ueda, J., Secord, T.W., Asada, H.H.: Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Trans. Mechatron. 15(5), 770–782 (2010)CrossRef Ueda, J., Secord, T.W., Asada, H.H.: Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Trans. Mechatron. 15(5), 770–782 (2010)CrossRef
23.
go back to reference Li, J.P., Zhou, X.Q., Zhao, H.W., Shao, M.K., Hou, P.L., Xu, X.Q.: Design and experimental performances of a piezoelectric linear actuator by means of lateral motion. Smart Mater. Struct. 24(6), 065007 (2015)CrossRef Li, J.P., Zhou, X.Q., Zhao, H.W., Shao, M.K., Hou, P.L., Xu, X.Q.: Design and experimental performances of a piezoelectric linear actuator by means of lateral motion. Smart Mater. Struct. 24(6), 065007 (2015)CrossRef
24.
go back to reference Li, J.P., Zhou, X.Q., Zhao, H.W., Shao, M.K., Li, N., Zhang, S.Z., Du, Y.M.: Development of a novel parasitic-type piezoelectric actuator. IEEE/ASME Trans. Mechatron. 22(1), 541–550 (2017)CrossRef Li, J.P., Zhou, X.Q., Zhao, H.W., Shao, M.K., Li, N., Zhang, S.Z., Du, Y.M.: Development of a novel parasitic-type piezoelectric actuator. IEEE/ASME Trans. Mechatron. 22(1), 541–550 (2017)CrossRef
25.
go back to reference Cheng, T.H., He, M., Li, H.Y., Lu, X.H., Zhao, H.W., Gao, H.B.: A novel trapezoid-type stick–slip piezoelectric linear actuator using right circular flexure hinge mechanism. IEEE Trans. Ind. Electron. 64(7), 5545–5552 (2017)CrossRef Cheng, T.H., He, M., Li, H.Y., Lu, X.H., Zhao, H.W., Gao, H.B.: A novel trapezoid-type stick–slip piezoelectric linear actuator using right circular flexure hinge mechanism. IEEE Trans. Ind. Electron. 64(7), 5545–5552 (2017)CrossRef
26.
go back to reference Li, Y.K., Li, H.Y., Cheng, T.H., Lu, X.H., Zhao, H.W., Chen, P.F.: Note: Lever-type bidirectional stick-slip piezoelectric actuator with flexible hinge. Rev. Sci. Instrum. 89(8), 086101 (2018)CrossRef Li, Y.K., Li, H.Y., Cheng, T.H., Lu, X.H., Zhao, H.W., Chen, P.F.: Note: Lever-type bidirectional stick-slip piezoelectric actuator with flexible hinge. Rev. Sci. Instrum. 89(8), 086101 (2018)CrossRef
27.
go back to reference Qin, F., Huang, H., Wang, J.R., Zhao, H.W.: Design and performance evaluation of a novel stick-slip piezoelectric linear actuator with a centrosymmetric-type flexure hinge mechanism. Microsyst. Technol. 25(10), 3891–3898 (2019)CrossRef Qin, F., Huang, H., Wang, J.R., Zhao, H.W.: Design and performance evaluation of a novel stick-slip piezoelectric linear actuator with a centrosymmetric-type flexure hinge mechanism. Microsyst. Technol. 25(10), 3891–3898 (2019)CrossRef
28.
go back to reference Lu, X.H., Gao, Q., Li, Y.K., Yu, Y., Zhang, X.S., Qiao, G.D., Cheng, T.H.: A linear piezoelectric stick-slip actuator via triangular displacement amplification mechanism. IEEE Access 8, 6515–6522 (2020)CrossRef Lu, X.H., Gao, Q., Li, Y.K., Yu, Y., Zhang, X.S., Qiao, G.D., Cheng, T.H.: A linear piezoelectric stick-slip actuator via triangular displacement amplification mechanism. IEEE Access 8, 6515–6522 (2020)CrossRef
29.
go back to reference Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)MathSciNetCrossRef Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)MathSciNetCrossRef
30.
go back to reference Da, D.C.: Topology Optimization Design of Heterogeneous Materials and Structures. Wiley-ISTE, Hoboken (2019)CrossRef Da, D.C.: Topology Optimization Design of Heterogeneous Materials and Structures. Wiley-ISTE, Hoboken (2019)CrossRef
31.
go back to reference Liu, K., Tovar, A.: An efficient 3D topology optimization code written in Matlab. Struct. Multidiscipl. Optim. 50(6), 1175–1196 (2014)MathSciNetCrossRef Liu, K., Tovar, A.: An efficient 3D topology optimization code written in Matlab. Struct. Multidiscipl. Optim. 50(6), 1175–1196 (2014)MathSciNetCrossRef
32.
go back to reference Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mechan. Struct. Mach. 25(4), 493–524 (1997)CrossRef Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mechan. Struct. Mach. 25(4), 493–524 (1997)CrossRef
33.
go back to reference Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21, 120–127 (2001)CrossRef Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21, 120–127 (2001)CrossRef
34.
go back to reference Lau, G.K., Du, H.J., Guo, N.Q., Lim, M.K.: Systematic design of displacement-amplifying mechanisms for piezoelectric stacked actuators using topology optimization. J. Intell. Mater. Syst. Struct. 11(9), 685–695 (2000)CrossRef Lau, G.K., Du, H.J., Guo, N.Q., Lim, M.K.: Systematic design of displacement-amplifying mechanisms for piezoelectric stacked actuators using topology optimization. J. Intell. Mater. Syst. Struct. 11(9), 685–695 (2000)CrossRef
35.
go back to reference Canfield, S., Frecker, M.: Topology optimization of compliant mechanical amplifiers for piezoelectric actuators. Struct. Multidiscip. Optim. 20, 269–279 (2020)CrossRef Canfield, S., Frecker, M.: Topology optimization of compliant mechanical amplifiers for piezoelectric actuators. Struct. Multidiscip. Optim. 20, 269–279 (2020)CrossRef
36.
go back to reference Yang, S.T., Xia, X., Liu, X., Qiao, G.D., Zhang, X.S., Lu, X.H.: Improving velocity of stick-slip piezoelectric actuators with optimized flexure hinges based on SIMP method. IEEE Access 8, 213122–213129 (2020)CrossRef Yang, S.T., Xia, X., Liu, X., Qiao, G.D., Zhang, X.S., Lu, X.H.: Improving velocity of stick-slip piezoelectric actuators with optimized flexure hinges based on SIMP method. IEEE Access 8, 213122–213129 (2020)CrossRef
37.
go back to reference Schlinquer, T., Mohand-Ousaid, A., Rakotondrabe, M.: Displacement amplifier mechanism for piezoelectric actuators design using SIMP topology optimization approach. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4305–4311. IEEE (2018) Schlinquer, T., Mohand-Ousaid, A., Rakotondrabe, M.: Displacement amplifier mechanism for piezoelectric actuators design using SIMP topology optimization approach. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4305–4311. IEEE (2018)
38.
go back to reference Zhang, X.M., Zhu, B.L.: Topology Optimization of Compliant Mechanisms. Springer, Berlin (2018)CrossRef Zhang, X.M., Zhu, B.L.: Topology Optimization of Compliant Mechanisms. Springer, Berlin (2018)CrossRef
39.
go back to reference Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications, 2nd edn. Springer, Berlin (2004)CrossRef Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications, 2nd edn. Springer, Berlin (2004)CrossRef
40.
go back to reference Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)MathSciNetCrossRef Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)MathSciNetCrossRef
Metadata
Title
A topology optimization method and experimental verification of piezoelectric stick–slip actuator with flexure hinge mechanism
Authors
Shitong Yang
Yuelong Li
Xiao Xia
Peng Ning
Wentao Ruan
Ruifang Zheng
Xiaohui Lu
Publication date
15-10-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 1/2022
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-02055-4

Other articles of this Issue 1/2022

Archive of Applied Mechanics 1/2022 Go to the issue

Premium Partners