Skip to main content
Top
Published in:

25-08-2023

A Transfer Learning-Based CNN Deep Learning Model for Unfavorable Driving State Recognition

Authors: Jichi Chen, Hong Wang, Enqiu He

Published in: Cognitive Computation | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The detection of unfavorable driving states (UDS) of drivers based on electroencephalogram (EEG) measures has received continuous attention from extensive scholars on account of directly reflecting brain neural activity with high temporal resolution and low risk of being deceived. However, the existing EEG-based driver UDS detection methods involve limited exploration of the functional connectivity patterns and interaction relationships within the brain network. Therefore, there is still room for improvement in the accuracy of detection. In this project, we propose three pretrained convolutional neural network (CNN)-based automatic detection frameworks for UDS of drivers with 30-channel EEG signals. The frameworks are investigated by adjusting the learning rate and choosing the optimization solver, etc. Two different conditions of driving experiments are performed, collecting EEG signals from sixteen subjects. The acquired 1-dimensional 30-channel EEG signals are converted into 2-dimensional matrices by the Granger causality (GC) method to form the functional connectivity graphs of the brain (FCGB). Then, the FCGB are fed into pretrained deep learning models that employed transfer learning strategy for feature extraction and judgment of different EEG signal types. Furthermore, we adopt two visualization interpretability techniques, named, activation visualization and gradient-weighted class activation mapping (Grad-CAM) for better visualizing and understanding the predictions of the pretrained models after fine-tuning. The experimental outcomes show that Resnet 18 model yields the highest average recognition accuracy of 90% using the rmsprop optimizer with a learning rate of 1e − 3. The overall outcomes suggest that cooperating of biologically inspired functional connectivity graphs of the brain and pretrained transfer learning algorithms is a prospective approach in reducing the rate of major traffic accidents caused by driver unfavorable driving states.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hao W, Daniel J. Driver injury severity related to inclement weather at highway-rail grade crossings in the United States. Traffic Inj Prev. 2016;17:31–8.CrossRef Hao W, Daniel J. Driver injury severity related to inclement weather at highway-rail grade crossings in the United States. Traffic Inj Prev. 2016;17:31–8.CrossRef
2.
go back to reference Chen J, Wang H, Hua C. Assessment of driver drowsiness using electroencephalogram signals based on multiple functional brain networks. Int J Psychophysiol. 2018;133:120–30.CrossRef Chen J, Wang H, Hua C. Assessment of driver drowsiness using electroencephalogram signals based on multiple functional brain networks. Int J Psychophysiol. 2018;133:120–30.CrossRef
3.
go back to reference Chen J, Wang H, Wang Q, Hua C. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. Neuropsychologia. 2019;129:200–11.CrossRef Chen J, Wang H, Wang Q, Hua C. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. Neuropsychologia. 2019;129:200–11.CrossRef
4.
go back to reference Yan X, Li X, Liu Y, Zhao J. Effects of foggy conditions on drivers’ speed control behaviors at different risk levels. Saf Sci. 2014;68:275–87.CrossRef Yan X, Li X, Liu Y, Zhao J. Effects of foggy conditions on drivers’ speed control behaviors at different risk levels. Saf Sci. 2014;68:275–87.CrossRef
5.
go back to reference Min J, Xiong C, Zhang Y, Cai M Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model. Biomed Signal Process Control. 2021;69. Min J,  Xiong  C, Zhang  Y, Cai M Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model. Biomed Signal Process Control. 2021;69.
6.
go back to reference Ma Y, Zhang S, Qi D, Luo Z, Li R, T. Potte T, Zhang Y. Driving drowsiness detection with EEG Using a modified hierarchical extreme learning machine algorithm with particle swarm optimization: a pilot study, Electronics. 2020;9. Ma Y, Zhang S, Qi D, Luo Z, Li R, T. Potte T, Zhang Y. Driving drowsiness detection with EEG Using a modified hierarchical extreme learning machine algorithm with particle swarm optimization: a pilot study, Electronics. 2020;9.
7.
go back to reference Lin Z, Qiu T, Liu P, Zhang L, Zhang S, Mu Z. Fatigue driving recognition based on deep learning and graph neural network. Biomed Signal Process Control. 68;2021. Lin Z, Qiu T, Liu P, Zhang L, Zhang S, Mu Z. Fatigue driving recognition based on deep learning and graph neural network. Biomed Signal Process Control. 68;2021.
8.
go back to reference Hu J. Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel. Comput Math Methods Med. 2017. Hu J. Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel. Comput Math Methods Med. 2017.
9.
go back to reference Zou S, Qiu T, Huang P, Bai X, Liu C. Constructing multi-scale entropy based on the empirical mode decomposition (EMD) and its application in recognizing driving fatigue. J Neurosci Methods. 2020;341. Zou S, Qiu T, Huang P, Bai X, Liu C. Constructing multi-scale entropy based on the empirical mode decomposition (EMD) and its application in recognizing driving fatigue. J Neurosci Methods. 2020;341.
10.
go back to reference Hu J. Automated detection of driver fatigue based on AdaBoost classifier with EEG signals. Front Comput Neurosci. 2017;11. Hu J. Automated detection of driver fatigue based on AdaBoost classifier with EEG signals. Front Comput Neurosci. 2017;11.
11.
go back to reference Yildirim O, Talo M, Ay B, Baloglu UB, Aydin G, Acharya UR. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput Biol Med. 113 (2019). Yildirim O, Talo M, Ay B, Baloglu UB, Aydin G, Acharya UR. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput Biol Med. 113 (2019).
12.
go back to reference Abbasi AA, Hussain L, Awan IA, Abbasi I, Majid A, Nadeem MSA, Chaudhary QA. Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn Neurodyn. 2020;14:523–33.CrossRef Abbasi AA, Hussain L, Awan IA, Abbasi I, Majid A, Nadeem MSA, Chaudhary QA. Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn Neurodyn. 2020;14:523–33.CrossRef
13.
go back to reference Cheng G, Yang CY, Yao XW, Guo L, Han JW. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans Geosci Remote Sens. 2018;56:2811–21.CrossRef Cheng G, Yang CY, Yao XW, Guo L, Han JW. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans Geosci Remote Sens. 2018;56:2811–21.CrossRef
14.
go back to reference Zhu YX, Sun WM, Cao XY, Wang CY, Wu DY, Yang Y, Ye N. TA-CNN: Two-way attention models in deep convolutional neural network for plant recognition. Neurocomputing. 2019;365:191–200.CrossRef Zhu YX, Sun WM, Cao XY, Wang CY, Wu DY, Yang Y, Ye N. TA-CNN: Two-way attention models in deep convolutional neural network for plant recognition. Neurocomputing. 2019;365:191–200.CrossRef
15.
go back to reference Zhang M, Li B, Liu Y, Tang R, Lang Y, Huang Q, He J. Different modes of low-frequency focused ultrasound-mediated attenuation of epilepsy based on the topological theory. Micromachines. 2021;12. Zhang M, Li B, Liu Y, Tang R, Lang Y, Huang Q, He J. Different modes of low-frequency focused ultrasound-mediated attenuation of epilepsy based on the topological theory. Micromachines. 2021;12.
16.
go back to reference Luo C, Li F, Li P, Yi C, Li C, Tao Q, Zhang X, Si Y, Yao D, Yin G, Song P, Wang H, Xu P. A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn. 2022;16:17–41.CrossRef Luo C, Li F, Li P, Yi C, Li C, Tao Q, Zhang X, Si Y, Yao D, Yin G, Song P, Wang H, Xu P. A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn. 2022;16:17–41.CrossRef
17.
go back to reference Boersma M, Smit DJA, de Bie HMA, Van Baal GCM, Boomsma DI, de Geus EJC, Delemarre-van de Waal HA, Stam CJ. Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp. 2011;32:413–25.CrossRef Boersma M, Smit DJA, de Bie HMA, Van Baal GCM, Boomsma DI, de Geus EJC, Delemarre-van de Waal HA, Stam CJ. Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp. 2011;32:413–25.CrossRef
18.
go back to reference Xin J, Zhou K, Wang Z, Wang Z, Chen J, Wang X, Chen Q. Hybrid high-order brain functional networks for schizophrenia-aided diagnosis. Cogn Comput. 2022;14:1303–15.CrossRef Xin J, Zhou K, Wang Z, Wang Z, Chen J, Wang X, Chen Q. Hybrid high-order brain functional networks for schizophrenia-aided diagnosis. Cogn Comput. 2022;14:1303–15.CrossRef
19.
go back to reference Chang W, Wang H, Yan G, Liu C. An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network. Expert Syst Appl. 2020;158. Chang W, Wang H, Yan G, Liu C. An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network. Expert Syst Appl. 2020;158.
20.
go back to reference Hu F, Wang H, Wang Q, Feng N, Chen J, Zhang T. Acrophobia quantified by EEG based on CNN incorporating granger causality. Int J Neural Syst. 2021;31. Hu F, Wang H, Wang Q, Feng N, Chen J, Zhang T. Acrophobia quantified by EEG based on CNN incorporating granger causality. Int J Neural Syst. 2021;31.
21.
go back to reference Li T, Li G, Xue T, Zhang J. Analyzing brain connectivity in the mutual regulation of emotion-movement using bidirectional Granger causality. Front Neurosci. 2020;14. Li T, Li G, Xue T, Zhang J. Analyzing brain connectivity in the mutual regulation of emotion-movement using bidirectional Granger causality. Front Neurosci. 2020;14.
22.
go back to reference Zhang Q, Yang Q, Zhang X, Bao Q, Su J, Liu X. Waste image classification based on transfer learning and convolutional neural network. Waste Manage. 2021;135:150–7.CrossRef Zhang Q, Yang Q, Zhang X, Bao Q, Su J, Liu X. Waste image classification based on transfer learning and convolutional neural network. Waste Manage. 2021;135:150–7.CrossRef
23.
go back to reference Xie W, Wei S, Zheng Z, Jiang Y, Yang D. Recognition of defective carrots based on deep learning and transfer learning. Food Bioprocess Technol. 2021;14:1361–74.CrossRef Xie W, Wei S, Zheng Z, Jiang Y, Yang D. Recognition of defective carrots based on deep learning and transfer learning. Food Bioprocess Technol. 2021;14:1361–74.CrossRef
24.
go back to reference Hossain SI, de Herve JdG, Hassan MS, Martineau D, Petrosyan E, Corbin V, Beytout J, Lebert I, Durand J, Carravieri I, Brun-Jacob A, Frey-Klett P, Baux E, Cazorla C, Eldin C, Hansmann Y, Patrat-Delon S, Prazuck T, Raffetin A, Tattevin P, Vourc'h G, Lesens O, Nguifo EM. Exploring convolutional neural networks with transfer learning for diagnosing Lyme disease from skin lesion images. Comput Methods Programs Biomed. 2022;215. Hossain SI, de Herve JdG, Hassan MS, Martineau D, Petrosyan E, Corbin V, Beytout J, Lebert I, Durand J, Carravieri I, Brun-Jacob A, Frey-Klett P, Baux E, Cazorla C, Eldin C, Hansmann Y, Patrat-Delon S, Prazuck T, Raffetin A, Tattevin P, Vourc'h G, Lesens O,  Nguifo EM. Exploring convolutional neural networks with transfer learning for diagnosing Lyme disease from skin lesion images. Comput Methods Programs Biomed. 2022;215.
25.
go back to reference Togacar M, Ergen B. Classification of cloud images by using super resolution, semantic segmentation approaches and binary sailfish optimization method with deep learning model. Comput Electron Agric. 2022;193. Togacar M, Ergen B. Classification of cloud images by using super resolution, semantic segmentation approaches and binary sailfish optimization method with deep learning model. Comput Electron Agric. 2022;193.
26.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vision. 2020;128:336–59.CrossRef Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vision. 2020;128:336–59.CrossRef
27.
go back to reference Shahbakhti M, Beiramvand M, Rejer I, Augustyniak P, Broniec-Wojcik A, Wierzchon M, Marozas V. Simultaneous eye blink characterization and elimination from low-channel prefrontal EEG signals enhances driver drowsiness detection. IEEE J Biomed Health Inform. 2022;26:1001–12.CrossRef Shahbakhti M, Beiramvand M, Rejer I, Augustyniak P, Broniec-Wojcik A, Wierzchon M, Marozas V. Simultaneous eye blink characterization and elimination from low-channel prefrontal EEG signals enhances driver drowsiness detection. IEEE J Biomed Health Inform. 2022;26:1001–12.CrossRef
28.
go back to reference MK. Wali, M. Murugappan, B. Ahmmad, Wavelet Packet transform based driver distraction level classification using EEG. Math Probl Eng. 2013. MK. Wali, M. Murugappan, B. Ahmmad, Wavelet Packet transform based driver distraction level classification using EEG. Math Probl Eng. 2013.
29.
go back to reference Fu R, Wang S, Wang S. Real-time alarm monitoring system for detecting driver fatigue in wireless areas. Promet-Traffic & Transportation. 2017;29:165–74.CrossRef Fu R, Wang S, Wang S. Real-time alarm monitoring system for detecting driver fatigue in wireless areas. Promet-Traffic & Transportation. 2017;29:165–74.CrossRef
30.
go back to reference Wang L, Johnson D, Lin Y. Using EEG to detect driving fatigue based on common spatial pattern and support vector machine. Turk J Electr Eng Comput Sci. 2021;29:1429–44.CrossRef Wang L, Johnson D, Lin Y. Using EEG to detect driving fatigue based on common spatial pattern and support vector machine. Turk J Electr Eng Comput Sci. 2021;29:1429–44.CrossRef
31.
go back to reference Zhang W, Wang F, Wu S, Xu Z, Ping J, Jiang Y. Partial directed coherence based graph convolutional neural networks for driving fatigue detection. Rev Sci Instrum. 91;2020. Zhang W, Wang F, Wu S, Xu Z, Ping J, Jiang Y. Partial directed coherence based graph convolutional neural networks for driving fatigue detection. Rev Sci Instrum. 91;2020.
32.
go back to reference Shahbakhti M, Beiramvand M, Nasiri E, Chen W, Sole-Casals J, Wierzchon M, Broniec-Wojcik A, Augustyniak P, Marozas Ieee V. The importance of gender specification for detection of driver fatigue using a single EEG channel, 14th Biomed Eng Int Conf. (BMEiCON)Songkhla Lipe, Thailand, 2022. Shahbakhti M, Beiramvand M, Nasiri E, Chen W, Sole-Casals J, Wierzchon M, Broniec-Wojcik A, Augustyniak P, Marozas Ieee V. The importance of gender specification for detection of driver fatigue using a single EEG channel, 14th Biomed Eng Int Conf. (BMEiCON)Songkhla Lipe, Thailand, 2022.
33.
go back to reference Ko LW, Komarov O, Lai WK, Liang WG, Jung TP. Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. J Neural Eng. 2020;17. Ko LW, Komarov O, Lai WK, Liang WG,  Jung TP. Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. J Neural Eng. 2020;17.
34.
go back to reference Shahbakhti M, Beiramvand M, Nasiri E, Far SM, Chen W, Sole-Casals J, Wierzchon M, Broniec-Wojcik A, Augustyniak P, Marozas V. Fusion of EEG and eye blink analysis for detection of driver fatigue. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2037–46.CrossRef Shahbakhti M, Beiramvand M, Nasiri E, Far SM, Chen W, Sole-Casals J, Wierzchon M, Broniec-Wojcik A, Augustyniak P, Marozas V. Fusion of EEG and eye blink analysis for detection of driver fatigue. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2037–46.CrossRef
Metadata
Title
A Transfer Learning-Based CNN Deep Learning Model for Unfavorable Driving State Recognition
Authors
Jichi Chen
Hong Wang
Enqiu He
Publication date
25-08-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 1/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10196-7

Premium Partner