Skip to main content
Top

2025 | OriginalPaper | Chapter

A Transformer and LSTM Model for Electricity Consumption Forecasting and User’s Behavior Influence

Authors : Laldja Ziani, Anis Chawki Abbes, Mohamed Essaid Khanouche, Parisa Ghodous

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Consumer behavior and habits play a crucial role in household energy consumption patterns. Influencing user behaviors towards sustainable electricity consumption practices consists an open challenge. To address this issue, the Internet of Behaviors (IoB) has emerged as a new paradigm that combines real-time data coming from Internet of Things (IoT) devices with information gathered from behavioral science and data analytics to influence people’s behavior. In the energy sector, IoB systems can build highly personalized models that allow smart home devices to encourage users to adopt more sustainable energy behaviours. This paper proposes a hybrid forecasting approach combining Long Short-Term Memory (LSTM) with a Transformer model to accurately predict electricity consumption in individual households. The proposed approach is integrated into a new IoB system designed to provide personalized and timely alerts that encourage energy-efficient practices, reducing thus costs and energy waste. The performance of this approach are compared with several baseline models using a real dataset related to household electricity consumption. The results show that the hybrid approach achieved lower Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) across various electricity patterns, demonstrating a better ability to anticipate future energy demands. The improved forecasting accuracy enables the IoB system to generate more precise and timely alerts, potentially leading to more effective user behaviors influence and significant energy savings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmed, S., Nielsen, I.E., Tripathi, A., Siddiqui, S., Ramachandran, R.P., Rasool, G.: Transformers in time-series analysis: a tutorial. Circ. Syst. Sig. Process. 42(12), 7433–7466 (2023)CrossRef Ahmed, S., Nielsen, I.E., Tripathi, A., Siddiqui, S., Ramachandran, R.P., Rasool, G.: Transformers in time-series analysis: a tutorial. Circ. Syst. Sig. Process. 42(12), 7433–7466 (2023)CrossRef
2.
go back to reference Alhussein, M., Aurangzeb, K., Haider, S.I.: Hybrid CNN-LSTM model for short-term individual household load forecasting. IEEE Access 8, 180544–180557 (2020)CrossRef Alhussein, M., Aurangzeb, K., Haider, S.I.: Hybrid CNN-LSTM model for short-term individual household load forecasting. IEEE Access 8, 180544–180557 (2020)CrossRef
3.
go back to reference Chan, J.W., Yeo, C.K.: Electrical power consumption forecasting with transformers. In: 2022 IEEE Electrical Power and Energy Conference (EPEC), pp. 255–260 (2022) Chan, J.W., Yeo, C.K.: Electrical power consumption forecasting with transformers. In: 2022 IEEE Electrical Power and Energy Conference (EPEC), pp. 255–260 (2022)
4.
go back to reference Chen, S., Zhang, G., Xia, X., Chen, Y., Setunge, S., Shi, L.: The impacts of occupant behavior on building energy consumption: a review. Sustain. Energ. Technol. Assess. 45, 101212 (2021) Chen, S., Zhang, G., Xia, X., Chen, Y., Setunge, S., Shi, L.: The impacts of occupant behavior on building energy consumption: a review. Sustain. Energ. Technol. Assess. 45, 101212 (2021)
5.
go back to reference Chen, W.T., Wang, C.H., Merrett, H.C., Liu, S.H., Chang, J.J.: Electricity consumption prediction-a case study of a university library. J. Build. Eng. 76, 106990 (2023)CrossRef Chen, W.T., Wang, C.H., Merrett, H.C., Liu, S.H., Chang, J.J.: Electricity consumption prediction-a case study of a university library. J. Build. Eng. 76, 106990 (2023)CrossRef
6.
go back to reference Elayan, H., Aloqaily, M., Karray, F., Guizani, M.: Decentralized IoB for influencing IoT-based systems behavior. In: ICC 2022-IEEE International Conference on Communications, pp. 3340–3345 (2022) Elayan, H., Aloqaily, M., Karray, F., Guizani, M.: Decentralized IoB for influencing IoT-based systems behavior. In: ICC 2022-IEEE International Conference on Communications, pp. 3340–3345 (2022)
7.
go back to reference Elayan, H., Aloqaily, M., Karray, F., Guizani, M.: Internet of behavior (IoB) and explainable AI systems for influencing IoT behavior. IEEE Netw. 37(1) (2022) Elayan, H., Aloqaily, M., Karray, F., Guizani, M.: Internet of behavior (IoB) and explainable AI systems for influencing IoT behavior. IEEE Netw. 37(1) (2022)
8.
go back to reference Hadjout, D., Torres, J., Troncoso, A., Sebaa, A., Martínez-Álvarez, F.: Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. Energy 243, 123060 (2022)CrossRef Hadjout, D., Torres, J., Troncoso, A., Sebaa, A., Martínez-Álvarez, F.: Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. Energy 243, 123060 (2022)CrossRef
9.
go back to reference Hadjout, D., Sebaa, A., Torres, J.F., Martínez-Álvarez, F.: Electricity consumption forecasting with outliers handling based on clustering and deep learning with application to the Algerian market. Expert Syst. Appl. 227, 120123 (2023)CrossRef Hadjout, D., Sebaa, A., Torres, J.F., Martínez-Álvarez, F.: Electricity consumption forecasting with outliers handling based on clustering and deep learning with application to the Algerian market. Expert Syst. Appl. 227, 120123 (2023)CrossRef
11.
go back to reference Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM CSUR 54(10s), 1–41 (2022)CrossRef Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM CSUR 54(10s), 1–41 (2022)CrossRef
12.
go back to reference Kim, H., Park, S., Kim, S.: Time-series clustering and forecasting household electricity demand using smart meter data. Energy Rep. 9, 4111–4121 (2023)CrossRef Kim, H., Park, S., Kim, S.: Time-series clustering and forecasting household electricity demand using smart meter data. Energy Rep. 9, 4111–4121 (2023)CrossRef
13.
go back to reference Krechiem, A., Khadir, M.T.: Algerian electricity consumption forecasting with artificial neural networks using a multiple seasonal-trend decomposition using loess. In: 2023 International Conference on Decision Aid Sciences and Applications (DASA), pp. 586–591 (2023) Krechiem, A., Khadir, M.T.: Algerian electricity consumption forecasting with artificial neural networks using a multiple seasonal-trend decomposition using loess. In: 2023 International Conference on Decision Aid Sciences and Applications (DASA), pp. 586–591 (2023)
14.
go back to reference Li, X., Zhong, Y., Shang, W., Zhang, X., Shan, B., Wang, X.: Total electricity consumption forecasting based on transformer time series models. Procedia Comput. Sci. 214, 312–320 (2022)CrossRef Li, X., Zhong, Y., Shang, W., Zhang, X., Shan, B., Wang, X.: Total electricity consumption forecasting based on transformer time series models. Procedia Comput. Sci. 214, 312–320 (2022)CrossRef
15.
go back to reference Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764 (2021)CrossRef Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764 (2021)CrossRef
16.
go back to reference Moustati, I., Gherabi, N., El Massari, H., Saadi, M.: From the internet of things (IoT) to the internet of behaviors (IoB) for data analysis. In: 2023 7th IEEE Congress on Information Science and Technology (CiSt), pp. 634–639 (2023) Moustati, I., Gherabi, N., El Massari, H., Saadi, M.: From the internet of things (IoT) to the internet of behaviors (IoB) for data analysis. In: 2023 7th IEEE Congress on Information Science and Technology (CiSt), pp. 634–639 (2023)
17.
go back to reference Rock, L.Y., Tajudeen, F.P., Chung, Y.W.: Usage and impact of the internet-of-things-based smart home technology: a quality-of-life perspective. Univ. Access Inf. Soc. 23(1), 345–364 (2024)CrossRef Rock, L.Y., Tajudeen, F.P., Chung, Y.W.: Usage and impact of the internet-of-things-based smart home technology: a quality-of-life perspective. Univ. Access Inf. Soc. 23(1), 345–364 (2024)CrossRef
18.
go back to reference Romeo, N.K., Mahangue, E.B.C., Cossa, A.E., Kaur, M., Goyal, M.K., Chhabra, M.: Transforming data into behavioral insights: a review of the internet of behavior (IoB). In: 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 70–75 (2024) Romeo, N.K., Mahangue, E.B.C., Cossa, A.E., Kaur, M., Goyal, M.K., Chhabra, M.: Transforming data into behavioral insights: a review of the internet of behavior (IoB). In: 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 70–75 (2024)
19.
go back to reference Shang, W., Cao, L., Li, F., Jiang, X., Li, X.: Building public market opinion indices for electricity consumption prediction of Chinese nonferrous metal industry. Procedia Comput. Sci. 221, 509–517 (2023)CrossRef Shang, W., Cao, L., Li, F., Jiang, X., Li, X.: Building public market opinion indices for electricity consumption prediction of Chinese nonferrous metal industry. Procedia Comput. Sci. 221, 509–517 (2023)CrossRef
20.
go back to reference Syed, D., Abu-Rub, H., Ghrayeb, A., Refaat, S.S.: Household-level energy forecasting in smart buildings using a novel hybrid deep learning model. IEEE Access 9, 33498–33511 (2021)CrossRef Syed, D., Abu-Rub, H., Ghrayeb, A., Refaat, S.S.: Household-level energy forecasting in smart buildings using a novel hybrid deep learning model. IEEE Access 9, 33498–33511 (2021)CrossRef
21.
go back to reference Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017) Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
22.
go back to reference Wang, J., Chen, X., Zhang, F., Chen, F., Xin, Y.: Building load forecasting using deep neural network with efficient feature fusion. J. Mod. Power Syst. Clean Energy 9(1), 160–169 (2021)CrossRef Wang, J., Chen, X., Zhang, F., Chen, F., Xin, Y.: Building load forecasting using deep neural network with efficient feature fusion. J. Mod. Power Syst. Clean Energy 9(1), 160–169 (2021)CrossRef
23.
go back to reference Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 11121–11128 (2023) Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 11121–11128 (2023)
24.
go back to reference Zhao, Q., Li, G., Cai, J., Zhou, M., Feng, L.: A tutorial on internet of behaviors: concept, architecture, technology, applications, and challenges. IEEE Commun. Surv. Tutorials 25(2) (2023) Zhao, Q., Li, G., Cai, J., Zhou, M., Feng, L.: A tutorial on internet of behaviors: concept, architecture, technology, applications, and challenges. IEEE Commun. Surv. Tutorials 25(2) (2023)
25.
go back to reference Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021) Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021)
26.
go back to reference Ziani, L., Khanouche, M.E., Belaid, A.: Internet of behaviors: a literature review of an emerging technology. In: 2022 First International Conference on Big Data, IoT, Web Intelligence and Applications (BIWA), pp. 42–47 (2022) Ziani, L., Khanouche, M.E., Belaid, A.: Internet of behaviors: a literature review of an emerging technology. In: 2022 First International Conference on Big Data, IoT, Web Intelligence and Applications (BIWA), pp. 42–47 (2022)
Metadata
Title
A Transformer and LSTM Model for Electricity Consumption Forecasting and User’s Behavior Influence
Authors
Laldja Ziani
Anis Chawki Abbes
Mohamed Essaid Khanouche
Parisa Ghodous
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_26

Premium Partner