Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 3/2021

13-11-2021 | Original Paper

A tunable nonlinear plasmonic multiplexer/demultiplexer device based on nanoscale ring resonators

Authors: Morteza Mansuri, Ali Mir, Ali Farmani

Published in: Photonic Network Communications | Issue 3/2021

Login to get access
share
SHARE

Abstract

The development of devices for communication networks to transmit information has become an active and growing field of research. Multiplexer/demultiplexer (M/D) is one of the basic devices in this field. In this paper, an M/D design is introduced based on the surface plasmon resonance in optical ring resonators. The number of inputs and outputs of M/D is 3 × 1 and 1 × 3, respectively. All parameters of the structure, including radius and width of ring resonators and waveguides, have been evaluated to obtain the optimal response. Also, we used the nonlinear gold property to expand the range of M/D performance and simulated the results for intensities less than 100 MW/cm2. Selectivity in the number of inputs and outputs, controllability using several parameters, all optically, selectivity in operation frequency, nanoscale size, reconfigurability, and integrated capability are the features of this design. In our simulation, we consider transmission and reflection of light in each port based on the finite difference time domain for evaluation of results.
Literature
1.
go back to reference Zaytsev, K.I., et al.: “Terahertz photonic crystal waveguides based on sapphire shaped crystals.” IEEE Trans. Tera. Sci. Tech. 6(4), 576–582 (2016) MathSciNetCrossRef Zaytsev, K.I., et al.: “Terahertz photonic crystal waveguides based on sapphire shaped crystals.” IEEE Trans. Tera. Sci. Tech. 6(4), 576–582 (2016) MathSciNetCrossRef
2.
go back to reference Fu, M., et al.: Efficient terahertz modulator based on photoexcited graphene. Opt. Mater. 66, 381–385 (2017) CrossRef Fu, M., et al.: Efficient terahertz modulator based on photoexcited graphene. Opt. Mater. 66, 381–385 (2017) CrossRef
3.
go back to reference Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018) CrossRef Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018) CrossRef
4.
go back to reference Kersting, R., Strasser, G., Unterrainer, K.: Terahertz phase modulator. Nat. Photonics 36(13), 1156–1158 (2000) Kersting, R., Strasser, G., Unterrainer, K.: Terahertz phase modulator. Nat. Photonics 36(13), 1156–1158 (2000)
5.
go back to reference Chen, H.-T., Padilla, W., Cich, M., Azad, A.K., Averitt, R.D., Taylor, A.: A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 148–151 (2009) CrossRef Chen, H.-T., Padilla, W., Cich, M., Azad, A.K., Averitt, R.D., Taylor, A.: A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 148–151 (2009) CrossRef
6.
go back to reference Chen, C.-Y., Pan, C.-L., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P.: Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88(10), 101107 (2006) CrossRef Chen, C.-Y., Pan, C.-L., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P.: Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88(10), 101107 (2006) CrossRef
7.
go back to reference Hashemi, M.R.M., Yang, S.-H., Wang, T., Sepúlveda, N., Jarrahi, M.: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci. Rep. 6, 35439 (2016) CrossRef Hashemi, M.R.M., Yang, S.-H., Wang, T., Sepúlveda, N., Jarrahi, M.: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci. Rep. 6, 35439 (2016) CrossRef
8.
go back to reference Reichel, K.S., Mendis, R., Mittleman, D.M.: A broadband terahertz waveguide T-junction variable power splitter. Sci. Rep. 6, 28925 (2016) CrossRef Reichel, K.S., Mendis, R., Mittleman, D.M.: A broadband terahertz waveguide T-junction variable power splitter. Sci. Rep. 6, 28925 (2016) CrossRef
9.
go back to reference Chen, C.-Y., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P., Pan, C.-L.: Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter. Opt. Express 12(12), 2625–2630 (2004) CrossRef Chen, C.-Y., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P., Pan, C.-L.: Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter. Opt. Express 12(12), 2625–2630 (2004) CrossRef
10.
go back to reference Krumbholz, N., et al.: Omnidirectional terahertz mirrors: a key element for future terahertz communication systems. Appl. Phys. Lett. 88(20), 202905 (2006) CrossRef Krumbholz, N., et al.: Omnidirectional terahertz mirrors: a key element for future terahertz communication systems. Appl. Phys. Lett. 88(20), 202905 (2006) CrossRef
11.
go back to reference Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018) CrossRef Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018) CrossRef
12.
go back to reference Hosseini, A., Massoud, Y.: A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 14(23), 11318–11323 (2006) CrossRef Hosseini, A., Massoud, Y.: A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 14(23), 11318–11323 (2006) CrossRef
13.
go back to reference Wang, G., Lu, H., Liu, X., Gong, Y.: Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23(44), 444009 (2012) CrossRef Wang, G., Lu, H., Liu, X., Gong, Y.: Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23(44), 444009 (2012) CrossRef
14.
go back to reference Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017) CrossRef Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017) CrossRef
15.
go back to reference Baqir, M., Farmani, A., Fatima, T., Raza, M., Shaukat, S., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018) CrossRef Baqir, M., Farmani, A., Fatima, T., Raza, M., Shaukat, S., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018) CrossRef
16.
go back to reference Clark, A.W., Glidle, A., Cumming, D.R., Cooper, J.M.: Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 131(48), 17615–17619 (2009) CrossRef Clark, A.W., Glidle, A., Cumming, D.R., Cooper, J.M.: Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 131(48), 17615–17619 (2009) CrossRef
17.
go back to reference Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017) CrossRef Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017) CrossRef
18.
go back to reference Liu, D., Wang, J., Zhang, F., Pan, Y., Lu, J., Ni, X.: Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators. Sensors 17(3), 585 (2017) CrossRef Liu, D., Wang, J., Zhang, F., Pan, Y., Lu, J., Ni, X.: Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators. Sensors 17(3), 585 (2017) CrossRef
19.
go back to reference Jeong, H.-H., et al.: Arrays of plasmonic nanoparticle dimers with defined nanogap spacers. ACS Nano 13(10), 11453–11459 (2019) CrossRef Jeong, H.-H., et al.: Arrays of plasmonic nanoparticle dimers with defined nanogap spacers. ACS Nano 13(10), 11453–11459 (2019) CrossRef
20.
go back to reference Farmani, A., Mir, A.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. 31(8), 643–646 (2019) CrossRef Farmani, A., Mir, A.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. 31(8), 643–646 (2019) CrossRef
21.
go back to reference Zhou, F., Du, W.: Ultrafast all-optical plasmonic graphene modulator. Appl. Opt. 57(23), 6645–6650 (2018) CrossRef Zhou, F., Du, W.: Ultrafast all-optical plasmonic graphene modulator. Appl. Opt. 57(23), 6645–6650 (2018) CrossRef
22.
go back to reference Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E Low-dimens. Syst. Nanostruct. 116, 113730 (2020) CrossRef Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E Low-dimens. Syst. Nanostruct. 116, 113730 (2020) CrossRef
23.
go back to reference Bai, N., et al.: Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012) CrossRef Bai, N., et al.: Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012) CrossRef
24.
go back to reference Xie, Y., Fu, S., Zhang, M., Tang, M., Shum, P., Liu, D.: Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission. Opt. Commun. 306, 185–189 (2013) CrossRef Xie, Y., Fu, S., Zhang, M., Tang, M., Shum, P., Liu, D.: Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission. Opt. Commun. 306, 185–189 (2013) CrossRef
25.
go back to reference Mohammadi, B., Soroosh, M., Kovsarian, A., Kavian, Y.S.: Improving the transmission efficiency in eight-channel all optical demultiplexers. Photon Netw. Commun. 38(1), 115–120 (2019) CrossRef Mohammadi, B., Soroosh, M., Kovsarian, A., Kavian, Y.S.: Improving the transmission efficiency in eight-channel all optical demultiplexers. Photon Netw. Commun. 38(1), 115–120 (2019) CrossRef
27.
go back to reference Moreolo, M.S., Silvestri, F., Armellino, M., Hingerl, K., Cincotti, G.: Optimization of a 2D photonic crystal add/drop multiplexer based on contra-directional coupling. Photon. Nanostruct-Fundam. Appl. 4(3), 155–160 (2006) CrossRef Moreolo, M.S., Silvestri, F., Armellino, M., Hingerl, K., Cincotti, G.: Optimization of a 2D photonic crystal add/drop multiplexer based on contra-directional coupling. Photon. Nanostruct-Fundam. Appl. 4(3), 155–160 (2006) CrossRef
28.
go back to reference Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon Netw. Commun. 34(2), 248–257 (2017) CrossRef Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon Netw. Commun. 34(2), 248–257 (2017) CrossRef
29.
go back to reference Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor fourchannel demultiplexer based on photonic crystal ring resonators. Opt. Appl. XLVI(4) (2016) Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor fourchannel demultiplexer based on photonic crystal ring resonators. Opt. Appl. XLVI(4) (2016)
30.
go back to reference Zayats, A.V., Smolyaninov, I.I., Maradudin, A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005) CrossRef Zayats, A.V., Smolyaninov, I.I., Maradudin, A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005) CrossRef
31.
go back to reference Gramotnev, D.K., Bozhevolnyi, S.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83 (2010) CrossRef Gramotnev, D.K., Bozhevolnyi, S.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83 (2010) CrossRef
32.
go back to reference Novotny, L., Van Hulst, N.: Antennas for light. Nat. Photonics 5(2), 83–90 (2011) CrossRef Novotny, L., Van Hulst, N.: Antennas for light. Nat. Photonics 5(2), 83–90 (2011) CrossRef
33.
go back to reference Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5(9), 523–530 (2011) CrossRef Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5(9), 523–530 (2011) CrossRef
34.
go back to reference Bana, X., Pang, X., Li, X., Huc, B., Guoa, Y., Zheng, H.: A nonlinear plasmonic waveguide based all-optical bidirectional switching. Opt. Commun. 406(1), 124–127 (2017) Bana, X., Pang, X., Li, X., Huc, B., Guoa, Y., Zheng, H.: A nonlinear plasmonic waveguide based all-optical bidirectional switching. Opt. Commun. 406(1), 124–127 (2017)
35.
go back to reference Lin, X.-S., Huang, X.-G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008) CrossRef Lin, X.-S., Huang, X.-G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008) CrossRef
36.
go back to reference Peng, X., Li, H., Wu, C., Cao, G., Liu, Z.: Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013) CrossRef Peng, X., Li, H., Wu, C., Cao, G., Liu, Z.: Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013) CrossRef
37.
go back to reference Ding, X., et al.: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136(44), 15684–15693 (2014) CrossRef Ding, X., et al.: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136(44), 15684–15693 (2014) CrossRef
38.
go back to reference Tao, J., Wang, Q., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753 (2011) CrossRef Tao, J., Wang, Q., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753 (2011) CrossRef
39.
go back to reference Haus, H.A., Lai, Y.: Theory of cascaded quarter wave shifted distributed feedback resonators. IEEE J. Quantum Electron. 28(1), 205–213 (1992) CrossRef Haus, H.A., Lai, Y.: Theory of cascaded quarter wave shifted distributed feedback resonators. IEEE J. Quantum Electron. 28(1), 205–213 (1992) CrossRef
Metadata
Title
A tunable nonlinear plasmonic multiplexer/demultiplexer device based on nanoscale ring resonators
Authors
Morteza Mansuri
Ali Mir
Ali Farmani
Publication date
13-11-2021
Publisher
Springer US
Published in
Photonic Network Communications / Issue 3/2021
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00953-9