Skip to main content
Top

2024 | OriginalPaper | Chapter

A Tutorial on Nonlinear Model Order Reduction

Author : A. Vizzaccaro

Published in: Nonlinear Structures & Systems, Vol. 1

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This tutorial introduces nonlinear methods for model order reduction of structures discretised with finite elements, with a particular emphasis on the case of geometric nonlinear structures. The aim of model order reduction (MOR) is to reduce the dimensionality of a large system of nonlinear ordinary differential equations by performing a change of coordinates from the original ones to new reduced ones. The two main ingredients of each (MOR) method are (i) the change of coordinates and (ii) the reduced dynamics in the new coordinate system. Specifically, nonlinear methods differ from linear-based techniques, as they rely on a nonlinear change of coordinates rather than the addition of new vectors to enlarge the linear projection basis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Muravyov, A.A., Rizzi, S.A.: Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Comput. Struct. 81(15), 1513–1523 (2003)CrossRef Muravyov, A.A., Rizzi, S.A.: Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Comput. Struct. 81(15), 1513–1523 (2003)CrossRef
2.
go back to reference Hollkamp, J.J., Gordon, R.W.: Reduced-order models for non-linear response prediction: implicit condensation and expansion. J. Sound Vib. 318, 1139–1153 (2008)CrossRef Hollkamp, J.J., Gordon, R.W.: Reduced-order models for non-linear response prediction: implicit condensation and expansion. J. Sound Vib. 318, 1139–1153 (2008)CrossRef
3.
go back to reference Kuether, R.J., Allen, M.S.: A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models. Mech. Syst. Signal Process. 46(1), 1–15 (2014)CrossRef Kuether, R.J., Allen, M.S.: A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models. Mech. Syst. Signal Process. 46(1), 1–15 (2014)CrossRef
4.
go back to reference Nicolaidou, E., Hill, T.L., Neild, S.A.: Indirect reduced order modelling: using nonlinear manifolds to conserve kinetic energy. Proc. R. Soc. A. 476, 20200589 (2021)MathSciNetCrossRef Nicolaidou, E., Hill, T.L., Neild, S.A.: Indirect reduced order modelling: using nonlinear manifolds to conserve kinetic energy. Proc. R. Soc. A. 476, 20200589 (2021)MathSciNetCrossRef
5.
go back to reference Jain, S., Tiso, P., Rutzmoser, J.B., Rixen, D.J.: A quadratic manifold for model order reduction of nonlinear structural dynamics. Comput. Struct. 188, 80–94 (2017)CrossRef Jain, S., Tiso, P., Rutzmoser, J.B., Rixen, D.J.: A quadratic manifold for model order reduction of nonlinear structural dynamics. Comput. Struct. 188, 80–94 (2017)CrossRef
6.
go back to reference Idelsohn, S.R., Cardona, A.: A reduction method for nonlinear structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 49(3), 253–279 (1985)CrossRef Idelsohn, S.R., Cardona, A.: A reduction method for nonlinear structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 49(3), 253–279 (1985)CrossRef
7.
go back to reference Vizzaccaro, A., Shen, Y., Salles, L., Blahos, J., Touzé, C.: Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. Comput. Methods Appl. Mech. Eng. 384, 113957 (2020)MathSciNetCrossRef Vizzaccaro, A., Shen, Y., Salles, L., Blahos, J., Touzé, C.: Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. Comput. Methods Appl. Mech. Eng. 384, 113957 (2020)MathSciNetCrossRef
8.
go back to reference Jain, S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite-element models. Nonlinear Dyn. 107, 1417 (2021)CrossRef Jain, S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite-element models. Nonlinear Dyn. 107, 1417 (2021)CrossRef
9.
go back to reference Weeger, O., Wever, U., Simeon, B.: On the use of modal derivatives for nonlinear model order reduction. Int. J. Numer. Methods Eng. 108(13), 1579–1602 (2016)MathSciNetCrossRef Weeger, O., Wever, U., Simeon, B.: On the use of modal derivatives for nonlinear model order reduction. Int. J. Numer. Methods Eng. 108(13), 1579–1602 (2016)MathSciNetCrossRef
10.
go back to reference Kim, K., Radu, A.G., Wang, X., Mignolet, M.P.: Nonlinear reduced order modeling of isotropic and functionally graded plates. Int. J. Non-Linear Mech. 49, 100–110 (2013)CrossRef Kim, K., Radu, A.G., Wang, X., Mignolet, M.P.: Nonlinear reduced order modeling of isotropic and functionally graded plates. Int. J. Non-Linear Mech. 49, 100–110 (2013)CrossRef
Metadata
Title
A Tutorial on Nonlinear Model Order Reduction
Author
A. Vizzaccaro
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69409-7_8