Skip to main content
Top

26-08-2016

A two-dimensional (2D) analytical surface potential and subthreshold current model for underlap dual-material double-gate (DMDG) FinFET

Authors: Vadthiya Narendar, Saurabh Rai, Siddharth Tiwari

Published in: Journal of Computational Electronics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Double-gate (DG) MOSFETs are regarded as leading front runners in the semiconductor industry. To alleviate the short-channel effects (SCEs) in DG MOSFET, a new underlap dual-material (DM) DG FinFET device structure is proposed, which has the advantages of an underlapped device as well as of a dual-material gate device (DMG). A 2D analytical surface potential and subthreshold current modelling of the proposed device has been done by solving the Poisson’s equation. It has also been found that the results obtained analytically are in good agreement with numerical simulation results. As the underlap length \((L_\mathrm{un})\) increases, a substantial reduction of subthreshold current due to enhanced gate control over channel regime is observed. The DMG used in the structure improves average velocity of the carriers which leads to superior drive current of the device. The proposed device structure has been compared with underlap single-metal (SM) DG FinFET structures in terms of electrical characteristics, such as drain-induced barrier lowering (DIBL). The comparison confirms the suppression of SCEs with increasing \(L_\mathrm{un}\) in both the structures, but it is more significant in the case of underlap DMDG FinFET structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Moore, G.: Cramming more components onto integrated circuit. Proc. IEEE 86(1), 82–85 (1998)CrossRef Moore, G.: Cramming more components onto integrated circuit. Proc. IEEE 86(1), 82–85 (1998)CrossRef
2.
go back to reference Robert, H.D., Fritz, H.G., Hwa-Nien, Y., V Leo, R., Ernest, B., Ander, R.L.: Designof ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuits 9, 256–268 (1974)CrossRef Robert, H.D., Fritz, H.G., Hwa-Nien, Y., V Leo, R., Ernest, B., Ander, R.L.: Designof ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuits 9, 256–268 (1974)CrossRef
4.
go back to reference Chenming, H.: Modern Semiconductor Devices for Integrated Circuits. Prentice Hall, Upper Saddle River (2009) Chenming, H.: Modern Semiconductor Devices for Integrated Circuits. Prentice Hall, Upper Saddle River (2009)
5.
go back to reference Surya, V., Jerry, G.F.: Short-channel effects in SOI MOSFET’s. IEEE Trans. Electron Dev. 36(3), 522–528 (1989)CrossRef Surya, V., Jerry, G.F.: Short-channel effects in SOI MOSFET’s. IEEE Trans. Electron Dev. 36(3), 522–528 (1989)CrossRef
6.
go back to reference David, J.F., Yuan, Tr, Hon-Sum, P.W.: Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Dev. Lett. 19(10), 385–388 (1998)CrossRef David, J.F., Yuan, Tr, Hon-Sum, P.W.: Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Dev. Lett. 19(10), 385–388 (1998)CrossRef
7.
go back to reference Hon-Sum, P.W.: Beyond the conventional transistor. IBM J. Res. Dev. 46(2), 133–168 (2002) Hon-Sum, P.W.: Beyond the conventional transistor. IBM J. Res. Dev. 46(2), 133–168 (2002)
8.
go back to reference Tripathi, S., Narendar, V.: A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattices Microstruct. 83, 476–487 (2015)CrossRef Tripathi, S., Narendar, V.: A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattices Microstruct. 83, 476–487 (2015)CrossRef
9.
go back to reference Clement, H.W., et al.: A comparative study of advanced MOSFET concepts. IEEE Trans. Electron Dev. 43(10), 1742–1753 (1996)CrossRef Clement, H.W., et al.: A comparative study of advanced MOSFET concepts. IEEE Trans. Electron Dev. 43(10), 1742–1753 (1996)CrossRef
10.
go back to reference Yan, Ran-Hong, Abbas, O., Kwing, F.L.: Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Dev. 39, 1704–1710 (1992)CrossRef Yan, Ran-Hong, Abbas, O., Kwing, F.L.: Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Dev. 39, 1704–1710 (1992)CrossRef
11.
go back to reference Yang, P.C., Li, S.S.: Analysis of current-voltage characteristics of fully depleted SOI MOSFETs. Solid State Electron. 36, 685–692 (1993)CrossRef Yang, P.C., Li, S.S.: Analysis of current-voltage characteristics of fully depleted SOI MOSFETs. Solid State Electron. 36, 685–692 (1993)CrossRef
12.
go back to reference Vadthiya, N., Ram, A.M.: Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices Microstruct. 85, 357–369 (2015)CrossRef Vadthiya, N., Ram, A.M.: Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices Microstruct. 85, 357–369 (2015)CrossRef
13.
go back to reference Colinge, J.P.: Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004)CrossRef Colinge, J.P.: Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004)CrossRef
14.
go back to reference Colinge, J.P.: Multi-gate SOI MOSFETs. Microelectron. Eng. 84(6), 2071–2076 (2007)CrossRef Colinge, J.P.: Multi-gate SOI MOSFETs. Microelectron. Eng. 84(6), 2071–2076 (2007)CrossRef
15.
go back to reference Park, J.T., Colinge, J.P., Diaz, C.H.: Pi-Gate SOI MOSFET. IEEE Electron Device Lett. 22(8), 405–406 (2001)CrossRef Park, J.T., Colinge, J.P., Diaz, C.H.: Pi-Gate SOI MOSFET. IEEE Electron Device Lett. 22(8), 405–406 (2001)CrossRef
16.
go back to reference Park, J.T., Colinge, J.P.: Multiple-gate SOI MOSFETs: device design guidelines. IEEE Electron Device Lett. 49(12), 2222–2229 (2002)CrossRef Park, J.T., Colinge, J.P.: Multiple-gate SOI MOSFETs: device design guidelines. IEEE Electron Device Lett. 49(12), 2222–2229 (2002)CrossRef
17.
go back to reference Raskin, J.P., Viviani, A., Flandre, D., Colinge, J.P.: Substrate crosstalk reduction using SOI technology. IEEE Electron Device Lett. 44(12), 2252–2261 (1997)CrossRef Raskin, J.P., Viviani, A., Flandre, D., Colinge, J.P.: Substrate crosstalk reduction using SOI technology. IEEE Electron Device Lett. 44(12), 2252–2261 (1997)CrossRef
18.
go back to reference Konard Young, K.: Short-channel effect in fully depleted SOI MOSFET’s. IEEE Electron Device Lett. 36(2), 399–402 (1989)CrossRef Konard Young, K.: Short-channel effect in fully depleted SOI MOSFET’s. IEEE Electron Device Lett. 36(2), 399–402 (1989)CrossRef
19.
go back to reference Yuan, T., et al.: An analytical solution to a double-gate MOSFET with undoped body. IEEE Electron Devices Lett. 21(5), 245–247 (2000)CrossRef Yuan, T., et al.: An analytical solution to a double-gate MOSFET with undoped body. IEEE Electron Devices Lett. 21(5), 245–247 (2000)CrossRef
20.
go back to reference Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.-J., Bokor, J., Chenming, H.: FinFET - A self-aligned double-gate MOSFET scalable beyond 20nm. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)CrossRef Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.-J., Bokor, J., Chenming, H.: FinFET - A self-aligned double-gate MOSFET scalable beyond 20nm. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)CrossRef
21.
go back to reference Qiang, C.: A physical short-channel threshold voltage model for undoped Symmetric Double-Gate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)CrossRef Qiang, C.: A physical short-channel threshold voltage model for undoped Symmetric Double-Gate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)CrossRef
22.
go back to reference Suzuki, K., Tanaka, T., Tasaka, Y., Horie, H., Arimoto, Y.: Scaling theory for double-gate SOI MOSFETs. IEEE Trans. Electron Devices 40(12), 2326–2329 (1993)CrossRef Suzuki, K., Tanaka, T., Tasaka, Y., Horie, H., Arimoto, Y.: Scaling theory for double-gate SOI MOSFETs. IEEE Trans. Electron Devices 40(12), 2326–2329 (1993)CrossRef
23.
go back to reference Suzuki, K., Sugii, T.: Analytical models for n\(^{+}\)-p\(^{+}\) double-gate SOI MOSFETs. IEEE Trans. Electron Devices 42(11), 1940–1948 (1995)CrossRef Suzuki, K., Sugii, T.: Analytical models for n\(^{+}\)-p\(^{+}\) double-gate SOI MOSFETs. IEEE Trans. Electron Devices 42(11), 1940–1948 (1995)CrossRef
24.
go back to reference Sang-Hyun, Oh, Monroe, D., Hergenrother, J.M.: Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Trans. Electron Devices 21(9), 445–447 (2000)CrossRef Sang-Hyun, Oh, Monroe, D., Hergenrother, J.M.: Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Trans. Electron Devices 21(9), 445–447 (2000)CrossRef
25.
go back to reference Liang, X., Taur, Y.: A 2-D Analytical Solution for SCEs in DG MOSFETs. IEEE Trans. Electron Devices 51(8), 1385–1391 (2004)CrossRef Liang, X., Taur, Y.: A 2-D Analytical Solution for SCEs in DG MOSFETs. IEEE Trans. Electron Devices 51(8), 1385–1391 (2004)CrossRef
26.
go back to reference Boeuf, F., Skotnicki, T., et al.: 16 nm planar NMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimization. IEDM Tech. Dig., pp. 637–640 (2001) Boeuf, F., Skotnicki, T., et al.: 16 nm planar NMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimization. IEDM Tech. Dig., pp. 637–640 (2001)
27.
go back to reference Bansal, A., Paul, B.C., Roy K.: Impact of gate underlap on gate capacitance and gate tunneling current in 16 nm DGMOS devices. In: Proc. IEEE SOI Conf., pp. 94–95 (2004) Bansal, A., Paul, B.C., Roy K.: Impact of gate underlap on gate capacitance and gate tunneling current in 16 nm DGMOS devices. In: Proc. IEEE SOI Conf., pp. 94–95 (2004)
28.
go back to reference Hyunjin, L., Jongho, L., Hyungcheol, S.: DC and AC characteristics of sub-50-nm MOSFETs with source/drain-to-gate nonoverlapped structure. IEEE Trans. Nanotechnol. 1(4), 219–225 (2002)CrossRef Hyunjin, L., Jongho, L., Hyungcheol, S.: DC and AC characteristics of sub-50-nm MOSFETs with source/drain-to-gate nonoverlapped structure. IEEE Trans. Nanotechnol. 1(4), 219–225 (2002)CrossRef
29.
go back to reference Bansal, A., Paul, B.C., Roy, K.: Modeling and optimization of fringe capacitance of nanoscale DGMOS devices. IEEE Trans. Electron Devices 52(2), 256–262 (2005)CrossRef Bansal, A., Paul, B.C., Roy, K.: Modeling and optimization of fringe capacitance of nanoscale DGMOS devices. IEEE Trans. Electron Devices 52(2), 256–262 (2005)CrossRef
30.
go back to reference Bansal, A., Roy, K.: Analytical subthreshold potential distribution model for gate underlap double-gate MOS transistors. IEEE Trans. Electron Devices 54(7), 1793–1798 (2007)CrossRef Bansal, A., Roy, K.: Analytical subthreshold potential distribution model for gate underlap double-gate MOS transistors. IEEE Trans. Electron Devices 54(7), 1793–1798 (2007)CrossRef
31.
go back to reference Zhou, X., Long, W.: A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology. IEEE Trans. Electron Devices 45(12), 2546–2548 (1998)CrossRef Zhou, X., Long, W.: A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology. IEEE Trans. Electron Devices 45(12), 2546–2548 (1998)CrossRef
32.
go back to reference Long, W., Ou, H., Kuo, J.-M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRef Long, W., Ou, H., Kuo, J.-M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRef
33.
go back to reference Zhou, X.: Exploring the novel characteristics of hetro-material gate field-effect transistors (HMGFET’s) with gate-material engineering. IEEE Trans. Electron Devices 47(1), 113–120 (2000)CrossRef Zhou, X.: Exploring the novel characteristics of hetro-material gate field-effect transistors (HMGFET’s) with gate-material engineering. IEEE Trans. Electron Devices 47(1), 113–120 (2000)CrossRef
34.
go back to reference Reddy, G.V., Kumar, M.J.: A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans. Nanotechnol. 2(2), 260–268 (2005)CrossRef Reddy, G.V., Kumar, M.J.: A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans. Nanotechnol. 2(2), 260–268 (2005)CrossRef
35.
go back to reference Polishchuk, I., Ranade, P., King, T.-J., Chenming, H.: Dual work function metal gate CMOS technology using metal interdiffusion. IEEE Electron Device Lett. 22(9), 444–446 (2001)CrossRef Polishchuk, I., Ranade, P., King, T.-J., Chenming, H.: Dual work function metal gate CMOS technology using metal interdiffusion. IEEE Electron Device Lett. 22(9), 444–446 (2001)CrossRef
36.
go back to reference Guillaumot B.: 75 nm damascene metal gate and high-k integration for advanced CMOS devices. IEDM. pp. 355–358 (2002) Guillaumot B.: 75 nm damascene metal gate and high-k integration for advanced CMOS devices. IEDM. pp. 355–358 (2002)
37.
go back to reference Liu, J., Wen, H.C., Lu, J.P., Kwong, D.L.: Dual-work-function metal gates by full silicidation of Poly-Si with Co-Nibi-layers. IEEE Electron Device Lett. 26(4), 228–230 (2005)CrossRef Liu, J., Wen, H.C., Lu, J.P., Kwong, D.L.: Dual-work-function metal gates by full silicidation of Poly-Si with Co-Nibi-layers. IEEE Electron Device Lett. 26(4), 228–230 (2005)CrossRef
38.
go back to reference Zhang, Z., Song, S.C., et al.: Integration of dual metal gate CMOS on high-k dielectrics utilizing a metal wet etch process. Electrochem. Solid State Lett. 8, G271–G274 (2005)CrossRef Zhang, Z., Song, S.C., et al.: Integration of dual metal gate CMOS on high-k dielectrics utilizing a metal wet etch process. Electrochem. Solid State Lett. 8, G271–G274 (2005)CrossRef
39.
go back to reference Ren, C., Yu, H.Y., et al.: A dual-metal gate integration process for CMOS with sub-1-nm EOT HfO2 by using HfN replacement gate. IEEE Electron Device Lett. 25(8), 580–582 (2004)CrossRef Ren, C., Yu, H.Y., et al.: A dual-metal gate integration process for CMOS with sub-1-nm EOT HfO2 by using HfN replacement gate. IEEE Electron Device Lett. 25(8), 580–582 (2004)CrossRef
40.
go back to reference Efavi, J.K., Mollenhauer, T., Wahlbrink, T., Gottlob, H.D.B., Lemme, M.C., Kurz, H.: Tungsten workfunction engineering for dual metal gate nano-CMOS. J. Mater. Sci. Mater. Electron. 16, 433–436 (2005)CrossRef Efavi, J.K., Mollenhauer, T., Wahlbrink, T., Gottlob, H.D.B., Lemme, M.C., Kurz, H.: Tungsten workfunction engineering for dual metal gate nano-CMOS. J. Mater. Sci. Mater. Electron. 16, 433–436 (2005)CrossRef
41.
go back to reference Device Simulation Software: Silvaco International. Santa Clara, CA (2012) Device Simulation Software: Silvaco International. Santa Clara, CA (2012)
42.
go back to reference Chen, Q., Harrell, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)CrossRef Chen, Q., Harrell, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)CrossRef
43.
go back to reference Zahn, M.: Electromagnetic Field Theory: A Problem Solving Approach. Wiley, New York (1979) Zahn, M.: Electromagnetic Field Theory: A Problem Solving Approach. Wiley, New York (1979)
44.
go back to reference Aritra, D., Chakravorty, A., DasGupta, N., DasGupta, A.: Analytical model of subthreshold current and slope for asymmetric 4-T and 3-T double-gate MOSFETs. IEEE Trans. Electron Devices 55(12), 3442–3449 (2008)CrossRef Aritra, D., Chakravorty, A., DasGupta, N., DasGupta, A.: Analytical model of subthreshold current and slope for asymmetric 4-T and 3-T double-gate MOSFETs. IEEE Trans. Electron Devices 55(12), 3442–3449 (2008)CrossRef
45.
go back to reference Havaldar, D.S., Katti, G., DasGupta, N., DasGupta, A.: Subthreshold current model of FinFETs based on analytical solution of 3-D Poisson’s equation. IEEE Trans. Electron Devices 53(4), 737–742 (2006)CrossRef Havaldar, D.S., Katti, G., DasGupta, N., DasGupta, A.: Subthreshold current model of FinFETs based on analytical solution of 3-D Poisson’s equation. IEEE Trans. Electron Devices 53(4), 737–742 (2006)CrossRef
46.
go back to reference Yeh, P.C., Fossum, J.G.: Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SOI low-voltage CMOS technology. IEEE Trans. Electron Devices 42(9), 1605–1613 (1995)CrossRef Yeh, P.C., Fossum, J.G.: Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SOI low-voltage CMOS technology. IEEE Trans. Electron Devices 42(9), 1605–1613 (1995)CrossRef
Metadata
Title
A two-dimensional (2D) analytical surface potential and subthreshold current model for underlap dual-material double-gate (DMDG) FinFET
Authors
Vadthiya Narendar
Saurabh Rai
Siddharth Tiwari
Publication date
26-08-2016
Publisher
Springer US
Published in
Journal of Computational Electronics
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0890-6