Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

A U-Nets Cascade for Sparse View Computed Tomography

Authors : Andreas Kofler, Markus Haltmeier, Christoph Kolbitsch, Marc Kachelrieß, Marc Dewey

Published in: Machine Learning for Medical Image Reconstruction

Publisher: Springer International Publishing

share
SHARE

Abstract

We propose a new convolutional neural network architecture for image reconstruction in sparse view computed tomography. The proposed network consists of a cascade of U-nets and data consistency layers. While the U-nets address the undersampling artifacts, the data consistency layers model the specific scanner geometry and make direct use of measured data. We train the network cascade end-to-end on sparse view cardiac CT images. The proposed network’s performance is evaluated according to different quantitative measures and compared to the one of a cascade with fully convolutional neural networks with residual connections and to the one of a single U-net with approximately the same number of trainable parameters. While in both experiments the methods show similar performance in terms of quantitative measures, our proposed U-nets cascade yields superior visual results and better preserves the overall image structure as well as fine diagnostic details, e.g. the coronary arteries. The latter is also confirmed by a statistically significant increase of the Haar-wavelet-based perceptual similarity index measure in all the experiments.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
2.
go back to reference Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Prob. 33(12), 124007 (2017) MathSciNetCrossRef Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Prob. 33(12), 124007 (2017) MathSciNetCrossRef
3.
go back to reference Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018) CrossRef Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018) CrossRef
4.
go back to reference Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017) MathSciNetCrossRef Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017) MathSciNetCrossRef
5.
go back to reference Reisenhofer, R., Bosse, S., Kutyniok, G., Wiegand, T.: A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Process. Image Commun. 61, 33–43 (2018) CrossRef Reisenhofer, R., Bosse, S., Kutyniok, G., Wiegand, T.: A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Process. Image Commun. 61, 33–43 (2018) CrossRef
Metadata
Title
A U-Nets Cascade for Sparse View Computed Tomography
Authors
Andreas Kofler
Markus Haltmeier
Christoph Kolbitsch
Marc Kachelrieß
Marc Dewey
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_11

Premium Partner