Skip to main content
Top
Published in: Computational Mechanics 3/2014

01-09-2014 | Original Paper

A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology

Authors: A. Javili, A. McBride, P. Steinmann, B. D. Reddy

Published in: Computational Mechanics | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A curvilinear-coordinate-based finite element methodology is presented as a basis for a straightforward computational implementation of the theory of surface elasticity that mimics the underlying mathematical and geometrical concepts. An efficient formulation is obtained by adopting the same methodology for both the bulk and the surface. The key steps to evaluate the hyperelastic constitutive relations at the level of the quadrature point in a finite element scheme using this unified approach are provided. The methodology is illustrated through selected numerical examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
2
Note that we distinguish between the material, spatial and natural configurations. A line element \(\text{ d }{\varvec{X}}\) in the material configuration is mapped to \(\text{ d }{\varvec{x}}\) in the spatial configuration via the linear map \({\varvec{F}}\) and to \(\text{ d }\varvec{\xi }\) in the natural (reference) configuration via \(\varvec{K}\), see Table 3. The material, spatial and natural configurations on the surface are defined in a near-identical fashion to the bulk, see Table 4.
 
3
The routine used, rsgene2D, produces a Gaussian height distribution with an exponential auto-covariance. The input parameters were 100 divisions, a surface length of 2, a root mean square height of 0.05, and an (isotropic) correlation length of \(0.25\).
 
Literature
1.
go back to reference Agrawal R, Peng B, Gdoutos EE, Espinosa HD (2008) Elasticity size effects in ZnO nanowires: a combined experimental–computational approach. Nano Lett 8(11):3668–3674CrossRef Agrawal R, Peng B, Gdoutos EE, Espinosa HD (2008) Elasticity size effects in ZnO nanowires: a combined experimental–computational approach. Nano Lett 8(11):3668–3674CrossRef
2.
go back to reference Altenbach H, Eremeyev V (2011) On the shell theory on the nanoscale with surface stresses. Int J Eng Sci 49(12):1294–1301CrossRefMathSciNet Altenbach H, Eremeyev V (2011) On the shell theory on the nanoscale with surface stresses. Int J Eng Sci 49(12):1294–1301CrossRefMathSciNet
3.
go back to reference Bangerth W, Hartmann R, Kanschat G (2007) deal.II: A general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24CrossRefMathSciNet Bangerth W, Hartmann R, Kanschat G (2007) deal.II: A general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24CrossRefMathSciNet
5.
go back to reference Benveniste Y, Berdichevsky O (2010) On two models of arbitrarily curved three-dimensional thin interphases in elasticity. Int J Solids Struct 47(1415):1899–1915CrossRefMATH Benveniste Y, Berdichevsky O (2010) On two models of arbitrarily curved three-dimensional thin interphases in elasticity. Int J Solids Struct 47(1415):1899–1915CrossRefMATH
6.
go back to reference Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323CrossRef Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323CrossRef
8.
go back to reference Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46(1):1–38 Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46(1):1–38
9.
10.
go back to reference Davydov D, Javili A, Steinmann P (2013) On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput Mater Sci 69:510–519CrossRef Davydov D, Javili A, Steinmann P (2013) On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput Mater Sci 69:510–519CrossRef
12.
go back to reference Dettmer W, Perić D (2006) A computational framework for free surface fluid flows accounting for surface tension. Comput Methods Appl Mech Eng 195(23–24):3038–3071CrossRefMATH Dettmer W, Perić D (2006) A computational framework for free surface fluid flows accounting for surface tension. Comput Methods Appl Mech Eng 195(23–24):3038–3071CrossRefMATH
13.
go back to reference Dingreville R, Qu J (2007) A semi-analytical method to compute surface elastic properties. Acta Mater 55(1):141–147CrossRef Dingreville R, Qu J (2007) A semi-analytical method to compute surface elastic properties. Acta Mater 55(1):141–147CrossRef
14.
go back to reference Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854CrossRefMATHMathSciNet Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854CrossRefMATHMathSciNet
15.
go back to reference Duan H, Wang J, Karihaloo B (2009) Theory of elasticity at the nonoscale. Adv Appl Mech 42:1–68CrossRef Duan H, Wang J, Karihaloo B (2009) Theory of elasticity at the nonoscale. Adv Appl Mech 42:1–68CrossRef
16.
go back to reference Duan HL, Karihaloo BL (2007) Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Physi Rev B 75:64206CrossRef Duan HL, Karihaloo BL (2007) Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Physi Rev B 75:64206CrossRef
17.
go back to reference Duan HL, Wang J, Huang ZP, Karihalo BL (2005) Eshelby formalism for nano-inhomogeneities. Proc R Soc A 461(2062):3335–3353CrossRefMATH Duan HL, Wang J, Huang ZP, Karihalo BL (2005) Eshelby formalism for nano-inhomogeneities. Proc R Soc A 461(2062):3335–3353CrossRefMATH
18.
go back to reference Fischer FD, Svoboda J (2010) Stresses in hollow nanoparticles. Sci Direct 47:2799–2805MATH Fischer FD, Svoboda J (2010) Stresses in hollow nanoparticles. Sci Direct 47:2799–2805MATH
19.
go back to reference Green AE, Zerna W (1968) Theoretical elasticity. Oxford University Press, OxfordMATH Green AE, Zerna W (1968) Theoretical elasticity. Oxford University Press, OxfordMATH
20.
go back to reference Gu ST, He Q-C (2011) Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J Mech Phys Solids 59(7):1413–1426CrossRefMATHMathSciNet Gu ST, He Q-C (2011) Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J Mech Phys Solids 59(7):1413–1426CrossRefMATHMathSciNet
22.
go back to reference He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8(7):1798–1802CrossRef He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8(7):1798–1802CrossRef
23.
go back to reference Heltai L (2008) On the stability of the finite element immersed boundary method. Comput Struct 86(7–8):598–617CrossRef Heltai L (2008) On the stability of the finite element immersed boundary method. Comput Struct 86(7–8):598–617CrossRef
24.
go back to reference Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Rev 82(1):87–93CrossRefMATH Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Rev 82(1):87–93CrossRefMATH
25.
go back to reference Huang Z, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190:151–163CrossRefMATH Huang Z, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190:151–163CrossRefMATH
26.
go back to reference Hung Z, Wang J (2006) A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech 182:195–210CrossRef Hung Z, Wang J (2006) A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech 182:195–210CrossRef
27.
go back to reference Itskov M (2007) Tensor algebra and tensor analysis for engineers. Springer, BerlinMATH Itskov M (2007) Tensor algebra and tensor analysis for engineers. Springer, BerlinMATH
28.
go back to reference Javili A, McBride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802CrossRef Javili A, McBride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802CrossRef
29.
go back to reference Javili A, McBride A, Steinmann P, Reddy BD (2012) Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philos Mag 92:3540–3563CrossRef Javili A, McBride A, Steinmann P, Reddy BD (2012) Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philos Mag 92:3540–3563CrossRef
30.
go back to reference Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput Methods Appl Mech Eng 198(27–29):2198–2208CrossRefMATHMathSciNet Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput Methods Appl Mech Eng 198(27–29):2198–2208CrossRefMATHMathSciNet
31.
go back to reference Javili A, Steinmann P (2010a) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765CrossRefMATHMathSciNet Javili A, Steinmann P (2010a) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765CrossRefMATHMathSciNet
32.
go back to reference Javili A, Steinmann P (2010b) On thermomechanical solids with boundary structures. Int J Solids Struct 47(24):3245–3253CrossRefMATH Javili A, Steinmann P (2010b) On thermomechanical solids with boundary structures. Int J Solids Struct 47(24):3245–3253CrossRefMATH
33.
go back to reference Javili A, Steinmann P (2011) A finite element framework for continua with boundary energies. Part III: the thermomechanical case. Comput Methods Appl Mech Eng 200(21–22):1963–1977CrossRefMATHMathSciNet Javili A, Steinmann P (2011) A finite element framework for continua with boundary energies. Part III: the thermomechanical case. Comput Methods Appl Mech Eng 200(21–22):1963–1977CrossRefMATHMathSciNet
34.
go back to reference Kreyszig E (1991) Differential geometry. Dover Publications, New York Kreyszig E (1991) Differential geometry. Dover Publications, New York
35.
go back to reference Levitas VI (2013) Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Mater 61:4305–4319CrossRef Levitas VI (2013) Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Mater 61:4305–4319CrossRef
36.
go back to reference McBride A, Javili A (2013) An efficient finite element implementation for problems in surface elasticity. McBride A, Javili A (2013) An efficient finite element implementation for problems in surface elasticity.
37.
go back to reference Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139CrossRef Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139CrossRef
38.
go back to reference Orowan E (1970) Surface energy and surface tension in solids and liquids. Proc R Soc 316:473–491CrossRef Orowan E (1970) Surface energy and surface tension in solids and liquids. Proc R Soc 316:473–491CrossRef
39.
go back to reference Park HS, Klein PA (2007) Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys Rev B 75(8):1–9CrossRef Park HS, Klein PA (2007) Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys Rev B 75(8):1–9CrossRef
40.
go back to reference Park HS, Klein PA (2008) A Surface Cauchy–Born model for silicon nanostructures. Comput Methods Appl Mech Eng 197(41–42):3249–3260CrossRefMATHMathSciNet Park HS, Klein PA (2008) A Surface Cauchy–Born model for silicon nanostructures. Comput Methods Appl Mech Eng 197(41–42):3249–3260CrossRefMATHMathSciNet
41.
go back to reference Park HS, Klein PA, Wagner GJ (2006) A surface Cauchy–Born model for nanoscale materials. Int J Numer Methods Eng 68(10):1072–1095CrossRefMATHMathSciNet Park HS, Klein PA, Wagner GJ (2006) A surface Cauchy–Born model for nanoscale materials. Int J Numer Methods Eng 68(10):1072–1095CrossRefMATHMathSciNet
42.
go back to reference Saksono PH, Perić D (2005) On finite element modelling of surface tension variational formulation and applications. Part I: quasistatic problems. Comput Mech 38(3):265–281CrossRef Saksono PH, Perić D (2005) On finite element modelling of surface tension variational formulation and applications. Part I: quasistatic problems. Comput Mech 38(3):265–281CrossRef
43.
go back to reference Scriven LE (1960) Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chem Eng Sci 12(2):98–108CrossRef Scriven LE (1960) Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chem Eng Sci 12(2):98–108CrossRef
44.
go back to reference Scriven LE, Sternling CV (1960) The marangoni effects. Nature 187:186–188CrossRef Scriven LE, Sternling CV (1960) The marangoni effects. Nature 187:186–188CrossRef
45.
go back to reference Sharma P, Ganti S (2004) Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J Appl Mech 71:663–671CrossRefMATH Sharma P, Ganti S (2004) Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J Appl Mech 71:663–671CrossRefMATH
46.
go back to reference Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537 Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537
47.
go back to reference Sharma P, Wheeler LT (2007) Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J Appl Mech 74(3):447–454CrossRefMATHMathSciNet Sharma P, Wheeler LT (2007) Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J Appl Mech 74(3):447–454CrossRefMATHMathSciNet
48.
go back to reference Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71(9):1–11 Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71(9):1–11
49.
go back to reference Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc Sect A 63(5):444–457CrossRef Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc Sect A 63(5):444–457CrossRef
50.
go back to reference Steigmann DJ (2009) A concise derivation of membrane theory from three-dimensional nonlinear elasticity. J Elast 97:97–101 Steigmann DJ (2009) A concise derivation of membrane theory from three-dimensional nonlinear elasticity. J Elast 97:97–101
51.
go back to reference Sussmann C, Givoli D, Benveniste Y (2011) Combined asymptotic finite-element modeling of thin layers for scalar elliptic problems. Comput Methods Appl Mech Eng 200(4748):3255–3269CrossRefMATHMathSciNet Sussmann C, Givoli D, Benveniste Y (2011) Combined asymptotic finite-element modeling of thin layers for scalar elliptic problems. Comput Methods Appl Mech Eng 200(4748):3255–3269CrossRefMATHMathSciNet
53.
go back to reference Wang Z-Q, Zhao Y-P, Huang Z-P (2010b) The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 48(2):140–150CrossRefMathSciNet Wang Z-Q, Zhao Y-P, Huang Z-P (2010b) The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 48(2):140–150CrossRefMathSciNet
54.
go back to reference Wei GW, Shouwen Y (2006) Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17(4):1118–1122CrossRef Wei GW, Shouwen Y (2006) Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17(4):1118–1122CrossRef
55.
go back to reference Weissmüller J, Duan H-L, Farkas D (2010) Deformation of solids with nanoscale pores by the action of capillary forces. Acta Mater 58(1):1–13CrossRef Weissmüller J, Duan H-L, Farkas D (2010) Deformation of solids with nanoscale pores by the action of capillary forces. Acta Mater 58(1):1–13CrossRef
56.
go back to reference Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH
57.
go back to reference Yun G, Park HS (2009) Surface stress effects on the bending properties of fcc metal nanowires. Phys Rev B 79(19):32–35CrossRef Yun G, Park HS (2009) Surface stress effects on the bending properties of fcc metal nanowires. Phys Rev B 79(19):32–35CrossRef
58.
go back to reference Yvonnet J, Mitrushchenkov A, Chambaud G, He Q-C (2011) Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Methods Appl Mech Eng 200(5–8):614–625CrossRefMATHMathSciNet Yvonnet J, Mitrushchenkov A, Chambaud G, He Q-C (2011) Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Methods Appl Mech Eng 200(5–8):614–625CrossRefMATHMathSciNet
59.
go back to reference Yvonnet J, Quang HL, He Q-C (2008) An XFEM level set approach to modelling surface–interface effects and computing the size-dependent effective properties of nanocomposites. Comput Mech 42(1):119–131CrossRefMATHMathSciNet Yvonnet J, Quang HL, He Q-C (2008) An XFEM level set approach to modelling surface–interface effects and computing the size-dependent effective properties of nanocomposites. Comput Mech 42(1):119–131CrossRefMATHMathSciNet
Metadata
Title
A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology
Authors
A. Javili
A. McBride
P. Steinmann
B. D. Reddy
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 3/2014
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1030-4

Other articles of this Issue 3/2014

Computational Mechanics 3/2014 Go to the issue