Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

A Unified Hyper-GAN Model for Unpaired Multi-contrast MR Image Translation

Authors : Heran Yang, Jian Sun, Liwei Yang, Zongben Xu

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Publisher: Springer International Publishing

share
SHARE

Abstract

Cross-contrast image translation is an important task for completing missing contrasts in clinical diagnosis. However, most existing methods learn separate translator for each pair of contrasts, which is inefficient due to many possible contrast pairs in real scenarios. In this work, we propose a unified Hyper-GAN model for effectively and efficiently translating between different contrast pairs. Hyper-GAN consists of a pair of hyper-encoder and hyper-decoder to first map from the source contrast to a common feature space, and then further map to the target contrast image. To facilitate the translation between different contrast pairs, contrast-modulators are designed to tune the hyper-encoder and hyper-decoder adaptive to different contrasts. We also design a common space loss to enforce that multi-contrast images of a subject share a common feature space, implicitly modeling the shared underlying anatomical structures. Experiments on two datasets of IXI and BraTS 2019 show that our Hyper-GAN achieves state-of-the-art results in both accuracy and efficiency, e.g., improving more than 1.47 and 1.09 dB in PSNR on two datasets with less than half the amount of parameters.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Appendix
Available only for authorised users
Literature
1.
go back to reference Alharbi, Y., Smith, N., Wonka, P.: Latent filter scaling for multimodal unsupervised image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1458–1466 (2019) Alharbi, Y., Smith, N., Wonka, P.: Latent filter scaling for multimodal unsupervised image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1458–1466 (2019)
2.
go back to reference Anoosheh, A., Agustsson, E., Timofte, R., Van Gool, L.: Combogan: unrestrained scalability for image domain translation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 783–790 (2018) Anoosheh, A., Agustsson, E., Timofte, R., Van Gool, L.: Combogan: unrestrained scalability for image domain translation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 783–790 (2018)
3.
go back to reference Bernstein, M.A., King, K.F., Zhou, X.J.: Handbook of MRI Pulse Sequences. Elsevier, Amsterdam (2004) Bernstein, M.A., King, K.F., Zhou, X.J.: Handbook of MRI Pulse Sequences. Elsevier, Amsterdam (2004)
5.
go back to reference Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018) Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)
6.
go back to reference Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019) CrossRef Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019) CrossRef
8.
go back to reference Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: International Conference on Learning Representations (2017) Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: International Conference on Learning Representations (2017)
9.
go back to reference Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189 (2015) Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189 (2015)
10.
go back to reference Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014) Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
11.
go back to reference Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: International Conference on Learning Representations (2017) Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: International Conference on Learning Representations (2017)
13.
go back to reference Huang, Y., Zheng, F., Cong, R., Huang, W., Scott, M.R., Shao, L.: MCMT-GAN: multi-task coherent modality transferable GAN for 3D brain image synthesis. IEEE Trans. Image Process. 29, 8187–8198 (2020) CrossRef Huang, Y., Zheng, F., Cong, R., Huang, W., Scott, M.R., Shao, L.: MCMT-GAN: multi-task coherent modality transferable GAN for 3D brain image synthesis. IEEE Trans. Image Process. 29, 8187–8198 (2020) CrossRef
14.
go back to reference Hui, L., Li, X., Chen, J., He, H., Yang, J.: Unsupervised multi-domain image translation with domain-specific encoders/decoders. In: International Conference on Pattern Recognition, pp. 2044–2049 (2018) Hui, L., Li, X., Chen, J., He, H., Yang, J.: Unsupervised multi-domain image translation with domain-specific encoders/decoders. In: International Conference on Pattern Recognition, pp. 2044–2049 (2018)
15.
go back to reference Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
17.
go back to reference Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: Random forest regression for magnetic resonance image synthesis. Med. Image Anal. 35, 475–488 (2017) CrossRef Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: Random forest regression for magnetic resonance image synthesis. Med. Image Anal. 35, 475–488 (2017) CrossRef
18.
go back to reference Liu, X., et al.: Dual-cycle constrained bijective VAE-GAN for tagged-to-cine magnetic resonance image synthesis. In: International Symposium on Biomedical Imaging (2021) Liu, X., et al.: Dual-cycle constrained bijective VAE-GAN for tagged-to-cine magnetic resonance image synthesis. In: International Symposium on Biomedical Imaging (2021)
19.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
20.
go back to reference Roy, S., Chou, Y.Y., Jog, A., Butman, J.A., Pham, D.L.: Patch based synthesis of whole head MR images: application to EPI distortion correction. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 146–156 (2016) Roy, S., Chou, Y.Y., Jog, A., Butman, J.A., Pham, D.L.: Patch based synthesis of whole head MR images: application to EPI distortion correction. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 146–156 (2016)
21.
go back to reference Sohail, M., Riaz, M.N., Wu, J., Long, C., Li, S.: Unpaired multi-contrast MR image synthesis using generative adversarial networks. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 22–31 (2019) Sohail, M., Riaz, M.N., Wu, J., Long, C., Li, S.: Unpaired multi-contrast MR image synthesis using generative adversarial networks. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 22–31 (2019)
22.
go back to reference Tang, H., Xu, D., Wang, W., Yan, Y., Sebe, N.: Dual generator generative adversarial networks for multi-domain image-to-image translation. In: Asian Conference on Computer Vision, pp. 3–21 (2018) Tang, H., Xu, D., Wang, W., Yan, Y., Sebe, N.: Dual generator generative adversarial networks for multi-domain image-to-image translation. In: Asian Conference on Computer Vision, pp. 3–21 (2018)
23.
go back to reference Vranic, J., Cross, N., Wang, Y., Hippe, D., de Weerdt, E., Mossa-Basha, M.: Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality. Am. J. Neuroradiol. 40(1), 92–98 (2019) CrossRef Vranic, J., Cross, N., Wang, Y., Hippe, D., de Weerdt, E., Mossa-Basha, M.: Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality. Am. J. Neuroradiol. 40(1), 92–98 (2019) CrossRef
24.
go back to reference Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 38(7), 1750–1762 (2019) CrossRef Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 38(7), 1750–1762 (2019) CrossRef
25.
go back to reference Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: Sample-adaptive GANs: linking global and local mappings for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 39(7), 2339–2350 (2020) CrossRef Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: Sample-adaptive GANs: linking global and local mappings for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 39(7), 2339–2350 (2020) CrossRef
27.
go back to reference Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015) CrossRef Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015) CrossRef
29.
go back to reference Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Metadata
Title
A Unified Hyper-GAN Model for Unpaired Multi-contrast MR Image Translation
Authors
Heran Yang
Jian Sun
Liwei Yang
Zongben Xu
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87199-4_12

Premium Partner