Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

03-01-2021 | Regular Paper | Issue 2/2021

Journal of Visualization 2/2021

A visual uncertainty analytics approach for weather forecast similarity measurement based on fuzzy clustering

Journal:
Journal of Visualization > Issue 2/2021
Authors:
Renpei Huang, Li Chen, Xiaoru Yuan
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Forecast calibration methods based on historical similar atmospheric state are effective means weather forecast accuracy. Conventional approaches search similar forecasts on the basis of predefined similarity formulas and provide calibration recommendations to forecasters. However, these approaches ignore the uncertainty of similarity measurement, which affects calibration efficacy significantly. This study proposes a similarity weight adaptive algorithm for high-dimensional data on the basis of fuzzy clustering to characterize the uncertainty of similarity measurements. Without prior knowledge, the algorithm computes the uncertainty of the similarity between data in the fuzzy set space iteratively on the basis of membership and then determine weight distribution by maximizing the differentiating ability of each dimension. This study further presents a visual analysis framework on the basis of the weight adaptive algorithm for the exploration of uncertainty in meteorological data and the optimization of similarity measurement method. This framework has coordinated views and intuitive interactions to enable the visualization of the similarity uncertainty distribution and support the iterative visual analysis of similarity weight distribution in each dimension that combines domain knowledge. We illustrate a case study using real-world meteorological data to verify the efficacy of the proposed approach.

Graphic abstract

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2021

Journal of Visualization 2/2021 Go to the issue

Premium Partner

    Image Credits